|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import cv2 as cv\n", |
| 10 | + "from scipy.spatial import distance\n", |
| 11 | + "import numpy as np\n", |
| 12 | + "from collections import OrderedDict" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "markdown", |
| 17 | + "metadata": {}, |
| 18 | + "source": [ |
| 19 | + "##### Object Tracking Class" |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "code", |
| 24 | + "execution_count": 2, |
| 25 | + "metadata": {}, |
| 26 | + "outputs": [], |
| 27 | + "source": [ |
| 28 | + "class Tracker:\n", |
| 29 | + " def __init__(self, maxLost = 30): # maxLost: maximum object lost counted when the object is being tracked\n", |
| 30 | + " self.nextObjectID = 0 # ID of next object\n", |
| 31 | + " self.objects = OrderedDict() # stores ID:Locations\n", |
| 32 | + " self.lost = OrderedDict() # stores ID:Lost_count\n", |
| 33 | + " \n", |
| 34 | + " self.maxLost = maxLost # maximum number of frames object was not detected.\n", |
| 35 | + " \n", |
| 36 | + " def addObject(self, new_object_location):\n", |
| 37 | + " self.objects[self.nextObjectID] = new_object_location # store new object location\n", |
| 38 | + " self.lost[self.nextObjectID] = 0 # initialize frame_counts for when new object is undetected\n", |
| 39 | + " \n", |
| 40 | + " self.nextObjectID += 1\n", |
| 41 | + " \n", |
| 42 | + " def removeObject(self, objectID): # remove tracker data after object is lost\n", |
| 43 | + " del self.objects[objectID]\n", |
| 44 | + " del self.lost[objectID]\n", |
| 45 | + " \n", |
| 46 | + " @staticmethod\n", |
| 47 | + " def getLocation(bounding_box):\n", |
| 48 | + " xlt, ylt, xrb, yrb = bounding_box\n", |
| 49 | + " return (int((xlt + xrb) / 2.0), int((ylt + yrb) / 2.0))\n", |
| 50 | + " \n", |
| 51 | + " def update(self, detections):\n", |
| 52 | + " \n", |
| 53 | + " if len(detections) == 0: # if no object detected in the frame\n", |
| 54 | + " for objectID in self.lost.keys():\n", |
| 55 | + " self.lost[objectID] +=1\n", |
| 56 | + " if self.lost[objectID] > self.maxLost: self.removeObject(objectID)\n", |
| 57 | + " \n", |
| 58 | + " return self.objects\n", |
| 59 | + " \n", |
| 60 | + " new_object_locations = np.zeros((len(detections), 2), dtype=\"int\") # current object locations\n", |
| 61 | + " \n", |
| 62 | + " for (i, detection) in enumerate(detections): new_object_locations[i] = self.getLocation(detection)\n", |
| 63 | + " \n", |
| 64 | + " if len(self.objects)==0:\n", |
| 65 | + " for i in range(0, len(detections)): self.addObject(new_object_locations[i])\n", |
| 66 | + " else:\n", |
| 67 | + " objectIDs = list(self.objects.keys())\n", |
| 68 | + " previous_object_locations = np.array(list(self.objects.values()))\n", |
| 69 | + " \n", |
| 70 | + " D = distance.cdist(previous_object_locations, new_object_locations) # pairwise distance between previous and current\n", |
| 71 | + " \n", |
| 72 | + " row_idx = D.min(axis=1).argsort() # (minimum distance of previous from current).sort_as_per_index\n", |
| 73 | + " \n", |
| 74 | + " cols_idx = D.argmin(axis=1)[row_idx] # index of minimum distance of previous from current\n", |
| 75 | + " \n", |
| 76 | + " assignedRows, assignedCols = set(), set()\n", |
| 77 | + " \n", |
| 78 | + " for (row, col) in zip(row_idx, cols_idx):\n", |
| 79 | + " \n", |
| 80 | + " if row in assignedRows or col in assignedCols:\n", |
| 81 | + " continue\n", |
| 82 | + " \n", |
| 83 | + " objectID = objectIDs[row]\n", |
| 84 | + " self.objects[objectID] = new_object_locations[col]\n", |
| 85 | + " self.lost[objectID] = 0\n", |
| 86 | + " \n", |
| 87 | + " assignedRows.add(row)\n", |
| 88 | + " assignedCols.add(col)\n", |
| 89 | + " \n", |
| 90 | + " unassignedRows = set(range(0, D.shape[0])).difference(assignedRows)\n", |
| 91 | + " unassignedCols = set(range(0, D.shape[1])).difference(assignedCols)\n", |
| 92 | + " \n", |
| 93 | + " \n", |
| 94 | + " if D.shape[0]>=D.shape[1]:\n", |
| 95 | + " for row in unassignedRows:\n", |
| 96 | + " objectID = objectIDs[row]\n", |
| 97 | + " self.lost[objectID] += 1\n", |
| 98 | + " \n", |
| 99 | + " if self.lost[objectID] > self.maxLost:\n", |
| 100 | + " self.removeObject(objectID)\n", |
| 101 | + " \n", |
| 102 | + " else:\n", |
| 103 | + " for col in unassignedCols:\n", |
| 104 | + " self.addObject(new_object_locations[col])\n", |
| 105 | + " \n", |
| 106 | + " return self.objects\n" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "markdown", |
| 111 | + "metadata": {}, |
| 112 | + "source": [ |
| 113 | + "#### Loading Object Detector Model" |
| 114 | + ] |
| 115 | + }, |
| 116 | + { |
| 117 | + "cell_type": "markdown", |
| 118 | + "metadata": {}, |
| 119 | + "source": [ |
| 120 | + "##### Tensorflow model for Object Detection and Tracking\n", |
| 121 | + "\n", |
| 122 | + "Here, the SSD Object Detection Model is used.\n", |
| 123 | + "\n", |
| 124 | + "For more details about single shot detection (SSD), refer the following:\n", |
| 125 | + " - **Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016, October). Ssd: Single shot multibox detector. In European conference on computer vision (pp. 21-37). Springer, Cham.**\n", |
| 126 | + " - Research paper link: https://arxiv.org/abs/1512.02325\n", |
| 127 | + " - The pretrained model: https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API#use-existing-config-file-for-your-model" |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "code", |
| 132 | + "execution_count": 3, |
| 133 | + "metadata": {}, |
| 134 | + "outputs": [], |
| 135 | + "source": [ |
| 136 | + "model_info = {\"config_path\":\"./tensorflow_model_dir/ssd_mobilenet_v2_coco_2018_03_29.pbtxt\",\n", |
| 137 | + " \"model_weights_path\":\"./tensorflow_model_dir/ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.pb\",\n", |
| 138 | + " \"object_names\": {0: 'background',\n", |
| 139 | + " 1: 'person', 2: 'bicycle', 3: 'car', 4: 'motorcycle', 5: 'airplane', 6: 'bus',\n", |
| 140 | + " 7: 'train', 8: 'truck', 9: 'boat', 10: 'traffic light', 11: 'fire hydrant',\n", |
| 141 | + " 13: 'stop sign', 14: 'parking meter', 15: 'bench', 16: 'bird', 17: 'cat',\n", |
| 142 | + " 18: 'dog', 19: 'horse', 20: 'sheep', 21: 'cow', 22: 'elephant', 23: 'bear',\n", |
| 143 | + " 24: 'zebra', 25: 'giraffe', 27: 'backpack', 28: 'umbrella', 31: 'handbag',\n", |
| 144 | + " 32: 'tie', 33: 'suitcase', 34: 'frisbee', 35: 'skis', 36: 'snowboard',\n", |
| 145 | + " 37: 'sports ball', 38: 'kite', 39: 'baseball bat', 40: 'baseball glove',\n", |
| 146 | + " 41: 'skateboard', 42: 'surfboard', 43: 'tennis racket', 44: 'bottle',\n", |
| 147 | + " 46: 'wine glass', 47: 'cup', 48: 'fork', 49: 'knife', 50: 'spoon',\n", |
| 148 | + " 51: 'bowl', 52: 'banana', 53: 'apple', 54: 'sandwich', 55: 'orange',\n", |
| 149 | + " 56: 'broccoli', 57: 'carrot', 58: 'hot dog', 59: 'pizza', 60: 'donut',\n", |
| 150 | + " 61: 'cake', 62: 'chair', 63: 'couch', 64: 'potted plant', 65: 'bed',\n", |
| 151 | + " 67: 'dining table', 70: 'toilet', 72: 'tv', 73: 'laptop', 74: 'mouse',\n", |
| 152 | + " 75: 'remote', 76: 'keyboard', 77: 'cell phone', 78: 'microwave', 79: 'oven',\n", |
| 153 | + " 80: 'toaster', 81: 'sink', 82: 'refrigerator', 84: 'book', 85: 'clock',\n", |
| 154 | + " 86: 'vase', 87: 'scissors', 88: 'teddy bear', 89: 'hair drier', 90: 'toothbrush'},\n", |
| 155 | + " \"confidence_threshold\": 0.5,\n", |
| 156 | + " \"threshold\": 0.4\n", |
| 157 | + " }\n", |
| 158 | + "\n", |
| 159 | + "net = cv.dnn.readNetFromTensorflow(model_info[\"model_weights_path\"], model_info[\"config_path\"])" |
| 160 | + ] |
| 161 | + }, |
| 162 | + { |
| 163 | + "cell_type": "code", |
| 164 | + "execution_count": 4, |
| 165 | + "metadata": { |
| 166 | + "scrolled": true |
| 167 | + }, |
| 168 | + "outputs": [], |
| 169 | + "source": [ |
| 170 | + "np.random.seed(12345)\n", |
| 171 | + "\n", |
| 172 | + "bbox_colors = {key: np.random.randint(0, 255, size=(3,)).tolist() for key in model_info['object_names'].keys()}" |
| 173 | + ] |
| 174 | + }, |
| 175 | + { |
| 176 | + "cell_type": "markdown", |
| 177 | + "metadata": {}, |
| 178 | + "source": [ |
| 179 | + "##### Instantiate the Tracker Class" |
| 180 | + ] |
| 181 | + }, |
| 182 | + { |
| 183 | + "cell_type": "code", |
| 184 | + "execution_count": 5, |
| 185 | + "metadata": {}, |
| 186 | + "outputs": [], |
| 187 | + "source": [ |
| 188 | + "maxLost = 5 # maximum number of object losts counted when the object is being tracked\n", |
| 189 | + "tracker = Tracker(maxLost = maxLost)" |
| 190 | + ] |
| 191 | + }, |
| 192 | + { |
| 193 | + "cell_type": "markdown", |
| 194 | + "metadata": {}, |
| 195 | + "source": [ |
| 196 | + "##### Initiate opencv video capture object\n", |
| 197 | + "\n", |
| 198 | + "The `video_src` can take two values:\n", |
| 199 | + "1. If `video_src=0`: OpenCV accesses the camera connected through USB\n", |
| 200 | + "2. If `video_src='video_file_path'`: OpenCV will access the video file at the given path (can be MP4, AVI, etc format)" |
| 201 | + ] |
| 202 | + }, |
| 203 | + { |
| 204 | + "cell_type": "code", |
| 205 | + "execution_count": 6, |
| 206 | + "metadata": {}, |
| 207 | + "outputs": [], |
| 208 | + "source": [ |
| 209 | + "video_src = \"./data/video_test5.mp4\"#0\n", |
| 210 | + "cap = cv.VideoCapture(video_src)" |
| 211 | + ] |
| 212 | + }, |
| 213 | + { |
| 214 | + "cell_type": "markdown", |
| 215 | + "metadata": {}, |
| 216 | + "source": [ |
| 217 | + "##### Start object detection and tracking" |
| 218 | + ] |
| 219 | + }, |
| 220 | + { |
| 221 | + "cell_type": "code", |
| 222 | + "execution_count": 7, |
| 223 | + "metadata": { |
| 224 | + "scrolled": false |
| 225 | + }, |
| 226 | + "outputs": [ |
| 227 | + { |
| 228 | + "name": "stdout", |
| 229 | + "output_type": "stream", |
| 230 | + "text": [ |
| 231 | + "Cannot read the video feed.\n" |
| 232 | + ] |
| 233 | + } |
| 234 | + ], |
| 235 | + "source": [ |
| 236 | + "(H, W) = (None, None) # input image height and width for the network\n", |
| 237 | + "writer = None\n", |
| 238 | + "while(True):\n", |
| 239 | + " \n", |
| 240 | + " ok, image = cap.read()\n", |
| 241 | + " \n", |
| 242 | + " if not ok:\n", |
| 243 | + " print(\"Cannot read the video feed.\")\n", |
| 244 | + " break\n", |
| 245 | + " \n", |
| 246 | + " if W is None or H is None: (H, W) = image.shape[:2]\n", |
| 247 | + " \n", |
| 248 | + " blob = cv.dnn.blobFromImage(image, size=(300, 300), swapRB=True, crop=False)\n", |
| 249 | + " net.setInput(blob)\n", |
| 250 | + " detections = net.forward()\n", |
| 251 | + " \n", |
| 252 | + " detections_bbox = [] # bounding box for detections\n", |
| 253 | + " \n", |
| 254 | + " boxes, confidences, classIDs = [], [], []\n", |
| 255 | + " \n", |
| 256 | + " for detection in detections[0, 0, :, :]:\n", |
| 257 | + " classID = detection[1]\n", |
| 258 | + " confidence = detection[2]\n", |
| 259 | + "\n", |
| 260 | + " if confidence > model_info['confidence_threshold']:\n", |
| 261 | + " box = detection[3:7] * np.array([W, H, W, H])\n", |
| 262 | + " \n", |
| 263 | + " (left, top, right, bottom) = box.astype(\"int\")\n", |
| 264 | + " width = right - left + 1\n", |
| 265 | + " height = bottom - top + 1\n", |
| 266 | + "\n", |
| 267 | + " boxes.append([int(left), int(top), int(width), int(height)])\n", |
| 268 | + " confidences.append(float(confidence))\n", |
| 269 | + " classIDs.append(int(classID))\n", |
| 270 | + " \n", |
| 271 | + " indices = cv.dnn.NMSBoxes(boxes, confidences, model_info[\"confidence_threshold\"], model_info[\"threshold\"])\n", |
| 272 | + " \n", |
| 273 | + " if len(indices)>0:\n", |
| 274 | + " for i in indices.flatten():\n", |
| 275 | + " x, y, w, h = boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3]\n", |
| 276 | + " \n", |
| 277 | + " detections_bbox.append((x, y, x+w, y+h))\n", |
| 278 | + " \n", |
| 279 | + " clr = [int(c) for c in bbox_colors[classIDs[i]]]\n", |
| 280 | + " cv.rectangle(image, (x, y), (x+w, y+h), clr, 2)\n", |
| 281 | + " \n", |
| 282 | + " label = \"{}:{:.4f}\".format(model_info[\"object_names\"][classIDs[i]], confidences[i])\n", |
| 283 | + " (label_width, label_height), baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 2)\n", |
| 284 | + " y_label = max(y, label_height)\n", |
| 285 | + " cv.rectangle(image, (x, y_label-label_height),\n", |
| 286 | + " (x+label_width, y_label+baseLine), (255, 255, 255), cv.FILLED)\n", |
| 287 | + " cv.putText(image, label, (x, y_label), cv.FONT_HERSHEY_SIMPLEX, 0.5, clr, 2)\n", |
| 288 | + " \n", |
| 289 | + " objects = tracker.update(detections_bbox) # update tracker based on the newly detected objects\n", |
| 290 | + " \n", |
| 291 | + " for (objectID, centroid) in objects.items():\n", |
| 292 | + " text = \"ID {}\".format(objectID)\n", |
| 293 | + " cv.putText(image, text, (centroid[0] - 10, centroid[1] - 10), cv.FONT_HERSHEY_SIMPLEX,\n", |
| 294 | + " 0.5, (0, 255, 0), 2)\n", |
| 295 | + " cv.circle(image, (centroid[0], centroid[1]), 4, (0, 255, 0), -1)\n", |
| 296 | + " \n", |
| 297 | + " cv.imshow(\"image\", image)\n", |
| 298 | + " \n", |
| 299 | + " if cv.waitKey(1) & 0xFF == ord('q'):\n", |
| 300 | + " break\n", |
| 301 | + " \n", |
| 302 | + " if writer is None:\n", |
| 303 | + " fourcc = cv.VideoWriter_fourcc(*\"MJPG\")\n", |
| 304 | + " writer = cv.VideoWriter(\"output.avi\", fourcc, 30, (W, H), True)\n", |
| 305 | + " writer.write(image)\n", |
| 306 | + "writer.release()\n", |
| 307 | + "cap.release()\n", |
| 308 | + "cv.destroyWindow(\"image\")" |
| 309 | + ] |
| 310 | + }, |
| 311 | + { |
| 312 | + "cell_type": "code", |
| 313 | + "execution_count": 8, |
| 314 | + "metadata": {}, |
| 315 | + "outputs": [], |
| 316 | + "source": [] |
| 317 | + } |
| 318 | + ], |
| 319 | + "metadata": { |
| 320 | + "kernelspec": { |
| 321 | + "display_name": "drlnd", |
| 322 | + "language": "python", |
| 323 | + "name": "drlnd" |
| 324 | + }, |
| 325 | + "language_info": { |
| 326 | + "codemirror_mode": { |
| 327 | + "name": "ipython", |
| 328 | + "version": 3 |
| 329 | + }, |
| 330 | + "file_extension": ".py", |
| 331 | + "mimetype": "text/x-python", |
| 332 | + "name": "python", |
| 333 | + "nbconvert_exporter": "python", |
| 334 | + "pygments_lexer": "ipython3", |
| 335 | + "version": "3.6.8" |
| 336 | + } |
| 337 | + }, |
| 338 | + "nbformat": 4, |
| 339 | + "nbformat_minor": 2 |
| 340 | +} |
0 commit comments