Skip to content

Commit abe1805

Browse files
author
bochinski
committed
V-IOU results and Mask R-CNN detections added
1 parent 70d16cf commit abe1805

File tree

2 files changed

+51
-21
lines changed

2 files changed

+51
-21
lines changed

README.md

Lines changed: 40 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -15,9 +15,20 @@ If you think our work is useful in your research, please consider citing:
1515
ADDRESS = {Lecce, Italy},
1616
URL = {http://elvera.nue.tu-berlin.de/files/1517Bochinski2017.pdf},
1717
}
18+
19+
@INPROCEEDINGS{1547Bochinski2018,
20+
AUTHOR = {Erik Bochinski and Tobias Senst and Thomas Sikora},
21+
TITLE = {Extending IOU Based Multi-Object Tracking by Visual Information},
22+
BOOKTITLE = {IEEE International Conference on Advanced Video and Signals-based Surveillance},
23+
YEAR = {2018},
24+
MONTH = nov,
25+
PAGES = {441--446},
26+
}
1827
```
1928

2029
**Update** (December 2018):
30+
* added V-IOU results of our new paper [Extending IOU Based Multi-Object Tracking by Visual Information](http://elvera.nue.tu-berlin.de/files/1547Bochinski2018.pdf)
31+
* Mask R-CNN detections for UA-DETRAC added
2132
* CompACT parameters improved
2233

2334
## Demo
@@ -56,7 +67,7 @@ Example for the MOT17-04 sequence (detections can be downloaded [here](https://m
5667

5768
### DETRAC
5869
To reproduce the reported results, download and extract the [DETRAC-toolkit](http://detrac-db.rit.albany.edu/download)
59-
and the detections you want to evaluate. Download links for the EB detections are provided below.
70+
and the detections you want to evaluate. Download links for the EB and Mask R-CNN detections are provided below.
6071
Clone this repository into "DETRAC-MOT-toolkit/trackers/".
6172
Follow the instructions to configure the toolkit for tracking evaluation and set the tracker name in "DETRAC_experiment.m":
6273

@@ -70,27 +81,32 @@ Note that you still need a working python environment with numpy installed.
7081
You should obtain something like the following results for the 'DETRAC-Train' set:
7182

7283
##### DETRAC-Train Results
73-
| Detector | PR-Rcll | PR-Prcn | PR-FAR | PR-MT | PR-PT | PR-ML | PR-FP | PR-FN | PR-IDs| PR-FM | PR-MOTA | PR-MOTP | PR-MOTAL |
74-
| -------- | ------- | ------- | ------ | ----- | ------ | ----- | ------- | ------- | ----- | ----- | ------- | ------- | -------- |
75-
| EB |37.86 |44.73 |0.10 |32.34 |12.88 |20.93 |7958.82 |163739.85|4129.40|4221.89|35.77 |40.81 |36.48 |
76-
| R-CNN |27.86 |52.90 |0.11 |19.53 |17.03 |18.56 |9047.95 |157521.18|4842.18|4969.57|25.46 |44.39 |26.29 |
77-
| CompACT |25.20 |49.69 |0.10 |18.50 |14.11 |19.06 |8053.54 |153026.99|2021.84|2302.83|23.46 |42.96 |23.81 |
78-
| ACF |27.39 |52.68 |0.14 |20.24 |15.66 |19.40 |11553.49 |161293.27|1845.49|2101.44|25.07 |44.71 |25.39 |
84+
| Detector | PR-Rcll | PR-Prcn | PR-FAR | PR-MT | PR-PT | PR-ML | PR-FP | PR-FN | PR-IDs| PR-FM | PR-MOTA | PR-MOTP | PR-MOTAL |
85+
| -------- | ------- | ------- | ------ | ----- | ------ | ----- | ------- | ------- | ----- | ----- | ------- | ------- | -------- |
86+
| EB |37.86 |44.73 |0.10 |32.34 |12.88 |20.93 |7958.82 |163739.85|4129.40|4221.89|35.77 |40.81 |36.48 |
87+
| R-CNN |27.86 |52.90 |0.11 |19.53 |17.03 |18.56 |9047.95 |157521.18|4842.18|4969.57|25.46 |44.39 |26.29 |
88+
| CompACT |25.20 |49.69 |0.10 |18.50 |14.11 |19.06 |8053.54 |153026.99|2021.84|2302.83|23.46 |42.96 |23.81 |
89+
| ACF |27.39 |52.68 |0.14 |20.24 |15.66 |19.40 |11553.49 |161293.27|1845.49|2101.44|25.07 |44.71 |25.39 |
90+
| Mask R-CNN |43.21 |47.26 |0.60 |37.22 |11.46 |24.24 |50096.88 |171714.09|1021.94|929.53 |34.36 |45.43 |34.54 |
7991

8092
##### DETRAC-Test (Overall) Results
8193
The reference results are taken from the [UA-DETRAC results](http://detrac-db.rit.albany.edu/TraRet) site. Only the best tracker / detector
8294
combination is displayed for each reference method.
8395

84-
| Tracker | Detector | PR-MOTA | PR-MOTP | PR-MT | PR-ML | PR-IDs | PR-FM | PR-FP | PR-FN | Speed |
85-
| ------------- | -------- | ------- | ----------- | --------- | --------- | -------- | -------- | ---------- | ---------- | -------------- |
86-
|CEM | CompACT | 5.1\% |35.2\% |3.0\% |35.3\% |**267.9** |**352.3** |**12341.2** |260390.4 |4.62 fps |
87-
|CMOT | CompACT | 12.6\% |36.1\% |16.1\% |18.6\% |285.3 |1516.8 |57885.9 |**167110.8**| & 3.79 fps |
88-
|GOG | CompACT | 14.2\% |37.0\% |13.9\% |19.9\% |3334.6 |3172.4 |32092.9 |180183.8 |390 fps |
89-
|DCT | R-CNN | 11.7\% |38.0\% |10.1\% |22.8\% |758.7 |742.9 |336561.2 |210855.6 |0.71 fps |
90-
|H<sup>2</sup>T | CompACT | 12.4\% |35.7\% |14.8\% |19.4\% |852.2 |1117.2 |51765.7 |173899.8 | 3.02 fps |
91-
|IHTLS | CompACT | 11.1\% |36.8\% |13.8\% |19.9\% |953.6 |3556.9 |53922.3 |180422.3 |19.79 fps |
92-
|**IOU** | R-CNN |16.0\% |**38.3\%** |13.8\% |20.7\% |5029.4 |5795.7 |22535.1 |193041.9 |**100,840 fps** |
93-
|**IOU** | EB |**19.4\%** |28.9\% |**17.7\%** |**18.4\%** |2311.3 |2445.9 |14796.5 |171806.8 |6,902 fps |
96+
| Tracker | Detector | PR-MOTA | PR-MOTP | PR-MT | PR-ML | PR-IDs | PR-FM | PR-FP | PR-FN | Speed |
97+
| ------------- | ----------- | ------- | ----------- | --------- | --------- | -------- | -------- | ---------- | ---------- | -------------- |
98+
|CEM | CompACT | 5.1\% |35.2\% |3.0\% |35.3\% |267.9 |352.3 |**12341.2** |260390.4 |4.62 fps |
99+
|CMOT | CompACT | 12.6\% |36.1\% |16.1\% |18.6\% |285.3 |1516.8 |57885.9 |167110.8 |3.79 fps |
100+
|GOG | CompACT | 14.2\% |37.0\% |13.9\% |19.9\% |3334.6 |3172.4 |32092.9 |180183.8 |390 fps |
101+
|DCT | R-CNN | 11.7\% |38.0\% |10.1\% |22.8\% |758.7 |742.9 |336561.2 |210855.6 |0.71 fps |
102+
|H<sup>2</sup>T | CompACT | 12.4\% |35.7\% |14.8\% |19.4\% |852.2 |1117.2 |51765.7 |173899.8 |3.02 fps |
103+
|IHTLS | CompACT | 11.1\% |36.8\% |13.8\% |19.9\% |953.6 |3556.9 |53922.3 |180422.3 |19.79 fps |
104+
|**IOU** | R-CNN |16.0\% |**38.3\%** |13.8\% |20.7\% |5029.4 |5795.7 |22535.1 |193041.9 |100,840 fps |
105+
|**IOU** | EB |19.4\% |28.9\% |17.7\% |**18.4\%** |2311.3 |2445.9 |14796.5 |171806.8 |6,902 fps |
106+
|**IOU** | CompACT | 16.1\% |37.0\% |14.8\% |19.7\% |2308.1 |3250.4 |24349.4 |176752.8 |**327,660 fps** |
107+
|**IOU** | Mask R-CNN | **30.7\%**|37.0\% |30.3\% |21.5\% |668.0 |733.6 |17370.3 |179505.9 |14,956 fps |
108+
|**V-IOU** | CompACT | 17.7\% |36.4\% |17.4\% |18.8\% |363.8 |1123.5 |26413.3 |**166571.7**|1117.90fps |
109+
|**V-IOU** | Mask R-CNN | **30.7\%**|37.0\% |**32.0\%** |22.6\% |**162.6** |**286.2** |18046.2 |179191.2 |359.18 fps |
94110

95111
##### EB detections
96112
The public detections of [EB](http://zyb.im/research/EB/) are not available on the
@@ -100,6 +116,13 @@ publication are available here:
100116
* [EB Train](https://tubcloud.tu-berlin.de/s/EtC6cFEYsAU0gFQ/download)
101117
* [EB Test](https://tubcloud.tu-berlin.de/s/oKM3dYhJbMFl1dY/download)
102118

119+
##### Mask R-CNN detections
120+
These detections are generated using a recent Mask R-CNN implementation trained on COCO.
121+
Only bounding boxes for COCOs *car*, *bus* and *truck* classes are included.
122+
Note that the detector is called "frcnn" (use `options.detectorSet = {'frcnn'};` in *initialize_environment.m*).
123+
* [Mask R-CNN Train](https://tubcloud.tu-berlin.de/s/MnGRGdH98WY9xQr/download)
124+
* [Mask R-CNN Test](https://tubcloud.tu-berlin.de/s/EztsFgm5AL8Jwtt/download)
125+
103126
### MOT17
104127
The IOU Tracker was evaluated on the MOT17 benchmark as well. To determine the best parameters for each detector, an
105128
exhaustive search of the parameter space was performed similar to the one of the MOT16 evaluation reported in the paper.

run_tracker.m

Lines changed: 11 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,17 @@
11
function [stateInfo, speed] = run_tracker(curSequence, baselinedetections)
22
%% tracker configuration
3-
%% R-CNN
3+
4+
%% Mask R-CNN (frcnn)
45
sigma_l = 0;
5-
sigma_h = 0.7;
6-
sigma_iou = 0.5;
7-
t_min = 2;
6+
sigma_h = 0.95;
7+
sigma_iou = 0.6;
8+
t_min = 7;
9+
10+
% %% R-CNN
11+
% sigma_l = 0;
12+
% sigma_h = 0.7;
13+
% sigma_iou = 0.5;
14+
% t_min = 2;
815

916
% %% ACF
1017
% sigma_l = 0;

0 commit comments

Comments
 (0)