@@ -15,9 +15,20 @@ If you think our work is useful in your research, please consider citing:
1515 ADDRESS = {Lecce, Italy},
1616 URL = {http://elvera.nue.tu-berlin.de/files/1517Bochinski2017.pdf},
1717 }
18+
19+ @INPROCEEDINGS{1547Bochinski2018,
20+ AUTHOR = {Erik Bochinski and Tobias Senst and Thomas Sikora},
21+ TITLE = {Extending IOU Based Multi-Object Tracking by Visual Information},
22+ BOOKTITLE = {IEEE International Conference on Advanced Video and Signals-based Surveillance},
23+ YEAR = {2018},
24+ MONTH = nov,
25+ PAGES = {441--446},
26+ }
1827```
1928
2029** Update** (December 2018):
30+ * added V-IOU results of our new paper [ Extending IOU Based Multi-Object Tracking by Visual Information] ( http://elvera.nue.tu-berlin.de/files/1547Bochinski2018.pdf )
31+ * Mask R-CNN detections for UA-DETRAC added
2132* CompACT parameters improved
2233
2334## Demo
@@ -56,7 +67,7 @@ Example for the MOT17-04 sequence (detections can be downloaded [here](https://m
5667
5768### DETRAC
5869To reproduce the reported results, download and extract the [ DETRAC-toolkit] ( http://detrac-db.rit.albany.edu/download )
59- and the detections you want to evaluate. Download links for the EB detections are provided below.
70+ and the detections you want to evaluate. Download links for the EB and Mask R-CNN detections are provided below.
6071Clone this repository into "DETRAC-MOT-toolkit/trackers/".
6172Follow the instructions to configure the toolkit for tracking evaluation and set the tracker name in "DETRAC_experiment.m":
6273
@@ -70,27 +81,32 @@ Note that you still need a working python environment with numpy installed.
7081You should obtain something like the following results for the 'DETRAC-Train' set:
7182
7283##### DETRAC-Train Results
73- | Detector | PR-Rcll | PR-Prcn | PR-FAR | PR-MT | PR-PT | PR-ML | PR-FP | PR-FN | PR-IDs| PR-FM | PR-MOTA | PR-MOTP | PR-MOTAL |
74- | -------- | ------- | ------- | ------ | ----- | ------ | ----- | ------- | ------- | ----- | ----- | ------- | ------- | -------- |
75- | EB | 37.86 | 44.73 | 0.10 | 32.34 | 12.88 | 20.93 | 7958.82 | 163739.85| 4129.40| 4221.89| 35.77 | 40.81 | 36.48 |
76- | R-CNN | 27.86 | 52.90 | 0.11 | 19.53 | 17.03 | 18.56 | 9047.95 | 157521.18| 4842.18| 4969.57| 25.46 | 44.39 | 26.29 |
77- | CompACT | 25.20 | 49.69 | 0.10 | 18.50 | 14.11 | 19.06 | 8053.54 | 153026.99| 2021.84| 2302.83| 23.46 | 42.96 | 23.81 |
78- | ACF | 27.39 | 52.68 | 0.14 | 20.24 | 15.66 | 19.40 | 11553.49 | 161293.27| 1845.49| 2101.44| 25.07 | 44.71 | 25.39 |
84+ | Detector | PR-Rcll | PR-Prcn | PR-FAR | PR-MT | PR-PT | PR-ML | PR-FP | PR-FN | PR-IDs| PR-FM | PR-MOTA | PR-MOTP | PR-MOTAL |
85+ | -------- | ------- | ------- | ------ | ----- | ------ | ----- | ------- | ------- | ----- | ----- | ------- | ------- | -------- |
86+ | EB | 37.86 | 44.73 | 0.10 | 32.34 | 12.88 | 20.93 | 7958.82 | 163739.85| 4129.40| 4221.89| 35.77 | 40.81 | 36.48 |
87+ | R-CNN | 27.86 | 52.90 | 0.11 | 19.53 | 17.03 | 18.56 | 9047.95 | 157521.18| 4842.18| 4969.57| 25.46 | 44.39 | 26.29 |
88+ | CompACT | 25.20 | 49.69 | 0.10 | 18.50 | 14.11 | 19.06 | 8053.54 | 153026.99| 2021.84| 2302.83| 23.46 | 42.96 | 23.81 |
89+ | ACF | 27.39 | 52.68 | 0.14 | 20.24 | 15.66 | 19.40 | 11553.49 | 161293.27| 1845.49| 2101.44| 25.07 | 44.71 | 25.39 |
90+ | Mask R-CNN | 43.21 | 47.26 | 0.60 | 37.22 | 11.46 | 24.24 | 50096.88 | 171714.09| 1021.94| 929.53 | 34.36 | 45.43 | 34.54 |
7991
8092##### DETRAC-Test (Overall) Results
8193The reference results are taken from the [ UA-DETRAC results] ( http://detrac-db.rit.albany.edu/TraRet ) site. Only the best tracker / detector
8294combination is displayed for each reference method.
8395
84- | Tracker | Detector | PR-MOTA | PR-MOTP | PR-MT | PR-ML | PR-IDs | PR-FM | PR-FP | PR-FN | Speed |
85- | ------------- | -------- | ------- | ----------- | --------- | --------- | -------- | -------- | ---------- | ---------- | -------------- |
86- | CEM | CompACT | 5.1\% | 35.2\% | 3.0\% | 35.3\% | ** 267.9** | ** 352.3** | ** 12341.2** | 260390.4 | 4.62 fps |
87- | CMOT | CompACT | 12.6\% | 36.1\% | 16.1\% | 18.6\% | 285.3 | 1516.8 | 57885.9 | ** 167110.8** | & 3.79 fps |
88- | GOG | CompACT | 14.2\% | 37.0\% | 13.9\% | 19.9\% | 3334.6 | 3172.4 | 32092.9 | 180183.8 | 390 fps |
89- | DCT | R-CNN | 11.7\% | 38.0\% | 10.1\% | 22.8\% | 758.7 | 742.9 | 336561.2 | 210855.6 | 0.71 fps |
90- | H<sup >2</sup >T | CompACT | 12.4\% | 35.7\% | 14.8\% | 19.4\% | 852.2 | 1117.2 | 51765.7 | 173899.8 | 3.02 fps |
91- | IHTLS | CompACT | 11.1\% | 36.8\% | 13.8\% | 19.9\% | 953.6 | 3556.9 | 53922.3 | 180422.3 | 19.79 fps |
92- | ** IOU** | R-CNN | 16.0\% | ** 38.3\% ** | 13.8\% | 20.7\% | 5029.4 | 5795.7 | 22535.1 | 193041.9 | ** 100,840 fps** |
93- | ** IOU** | EB | ** 19.4\% ** | 28.9\% | ** 17.7\% ** | ** 18.4\% ** | 2311.3 | 2445.9 | 14796.5 | 171806.8 | 6,902 fps |
96+ | Tracker | Detector | PR-MOTA | PR-MOTP | PR-MT | PR-ML | PR-IDs | PR-FM | PR-FP | PR-FN | Speed |
97+ | ------------- | ----------- | ------- | ----------- | --------- | --------- | -------- | -------- | ---------- | ---------- | -------------- |
98+ | CEM | CompACT | 5.1\% | 35.2\% | 3.0\% | 35.3\% | 267.9 | 352.3 | ** 12341.2** | 260390.4 | 4.62 fps |
99+ | CMOT | CompACT | 12.6\% | 36.1\% | 16.1\% | 18.6\% | 285.3 | 1516.8 | 57885.9 | 167110.8 | 3.79 fps |
100+ | GOG | CompACT | 14.2\% | 37.0\% | 13.9\% | 19.9\% | 3334.6 | 3172.4 | 32092.9 | 180183.8 | 390 fps |
101+ | DCT | R-CNN | 11.7\% | 38.0\% | 10.1\% | 22.8\% | 758.7 | 742.9 | 336561.2 | 210855.6 | 0.71 fps |
102+ | H<sup >2</sup >T | CompACT | 12.4\% | 35.7\% | 14.8\% | 19.4\% | 852.2 | 1117.2 | 51765.7 | 173899.8 | 3.02 fps |
103+ | IHTLS | CompACT | 11.1\% | 36.8\% | 13.8\% | 19.9\% | 953.6 | 3556.9 | 53922.3 | 180422.3 | 19.79 fps |
104+ | ** IOU** | R-CNN | 16.0\% | ** 38.3\% ** | 13.8\% | 20.7\% | 5029.4 | 5795.7 | 22535.1 | 193041.9 | 100,840 fps |
105+ | ** IOU** | EB | 19.4\% | 28.9\% | 17.7\% | ** 18.4\% ** | 2311.3 | 2445.9 | 14796.5 | 171806.8 | 6,902 fps |
106+ | ** IOU** | CompACT | 16.1\% | 37.0\% | 14.8\% | 19.7\% | 2308.1 | 3250.4 | 24349.4 | 176752.8 | ** 327,660 fps** |
107+ | ** IOU** | Mask R-CNN | ** 30.7\% ** | 37.0\% | 30.3\% | 21.5\% | 668.0 | 733.6 | 17370.3 | 179505.9 | 14,956 fps |
108+ | ** V-IOU** | CompACT | 17.7\% | 36.4\% | 17.4\% | 18.8\% | 363.8 | 1123.5 | 26413.3 | ** 166571.7** | 1117.90fps |
109+ | ** V-IOU** | Mask R-CNN | ** 30.7\% ** | 37.0\% | ** 32.0\% ** | 22.6\% | ** 162.6** | ** 286.2** | 18046.2 | 179191.2 | 359.18 fps |
94110
95111##### EB detections
96112The public detections of [ EB] ( http://zyb.im/research/EB/ ) are not available on the
@@ -100,6 +116,13 @@ publication are available here:
100116* [ EB Train] ( https://tubcloud.tu-berlin.de/s/EtC6cFEYsAU0gFQ/download )
101117* [ EB Test] ( https://tubcloud.tu-berlin.de/s/oKM3dYhJbMFl1dY/download )
102118
119+ ##### Mask R-CNN detections
120+ These detections are generated using a recent Mask R-CNN implementation trained on COCO.
121+ Only bounding boxes for COCOs * car* , * bus* and * truck* classes are included.
122+ Note that the detector is called "frcnn" (use ` options.detectorSet = {'frcnn'}; ` in * initialize_environment.m* ).
123+ * [ Mask R-CNN Train] ( https://tubcloud.tu-berlin.de/s/MnGRGdH98WY9xQr/download )
124+ * [ Mask R-CNN Test] ( https://tubcloud.tu-berlin.de/s/EztsFgm5AL8Jwtt/download )
125+
103126### MOT17
104127The IOU Tracker was evaluated on the MOT17 benchmark as well. To determine the best parameters for each detector, an
105128exhaustive search of the parameter space was performed similar to the one of the MOT16 evaluation reported in the paper.
0 commit comments