|
15 | 15 | "cell_type": "markdown",
|
16 | 16 | "metadata": {},
|
17 | 17 | "source": [
|
18 |
| - "\n# Follow particle\n" |
| 18 | + "\nFollow particle\n===============\n" |
19 | 19 | ]
|
20 | 20 | },
|
21 | 21 | {
|
|
55 | 55 | "cell_type": "markdown",
|
56 | 56 | "metadata": {},
|
57 | 57 | "source": [
|
58 |
| - "## Schema\n\n" |
| 58 | + "Schema\n------\n\n" |
59 | 59 | ]
|
60 | 60 | },
|
61 | 61 | {
|
|
73 | 73 | "cell_type": "markdown",
|
74 | 74 | "metadata": {},
|
75 | 75 | "source": [
|
76 |
| - "## Animation\nParticle settings\n\n" |
| 76 | + "Animation\n---------\nParticle settings\n\n" |
77 | 77 | ]
|
78 | 78 | },
|
79 | 79 | {
|
|
109 | 109 | "cell_type": "markdown",
|
110 | 110 | "metadata": {},
|
111 | 111 | "source": [
|
112 |
| - "### Particle advection\n\n" |
| 112 | + "Particle advection\n^^^^^^^^^^^^^^^^^^\n\n" |
113 | 113 | ]
|
114 | 114 | },
|
115 | 115 | {
|
|
120 | 120 | },
|
121 | 121 | "outputs": [],
|
122 | 122 | "source": [
|
123 |
| - "step = 1 / 60.0\n\nx, y = meshgrid(arange(24, 36, step), arange(31, 36, step))\nx0, y0 = x.reshape(-1), y.reshape(-1)\n# Pre-order to speed up\n_, i = group_obs(x0, y0, 1, 360)\nx0, y0 = x0[i], y0[i]\n\nt_start, t_end = n.period\ndt = 14\n\nshape = (n.obs.size, 2)\n# Forward run\ni_target_f, pct_target_f = -ones(shape, dtype=\"i4\"), zeros(shape, dtype=\"i1\")\nfor t in range(t_start, t_end - dt):\n particle_candidate(x0, y0, c, n, t, i_target_f, pct_target_f, n_days=dt)\n\n# Backward run\ni_target_b, pct_target_b = -ones(shape, dtype=\"i4\"), zeros(shape, dtype=\"i1\")\nfor t in range(t_start + dt, t_end):\n particle_candidate(x0, y0, c, n, t, i_target_b, pct_target_b, n_days=-dt)" |
| 123 | + "step = 1 / 60.0\n\nx, y = meshgrid(arange(24, 36, step), arange(31, 36, step))\nx0, y0 = x.reshape(-1), y.reshape(-1)\n# Pre-order to speed up\n_, i = group_obs(x0, y0, 1, 360)\nx0, y0 = x0[i], y0[i]\n\nt_start, t_end = n.period\ndt = 14\n\nshape = (n.obs.size, 2)\n# Forward run\ni_target_f, pct_target_f = -ones(shape, dtype=\"i4\"), zeros(shape, dtype=\"i1\")\nfor t in arange(t_start, t_end - dt):\n particle_candidate(x0, y0, c, n, t, i_target_f, pct_target_f, n_days=dt)\n\n# Backward run\ni_target_b, pct_target_b = -ones(shape, dtype=\"i4\"), zeros(shape, dtype=\"i1\")\nfor t in arange(t_start + dt, t_end):\n particle_candidate(x0, y0, c, n, t, i_target_b, pct_target_b, n_days=-dt)" |
124 | 124 | ]
|
125 | 125 | },
|
126 | 126 | {
|
|
131 | 131 | },
|
132 | 132 | "outputs": [],
|
133 | 133 | "source": [
|
134 |
| - "fig = plt.figure(figsize=(10, 10))\nax_1st_b = fig.add_axes([0.05, 0.52, 0.45, 0.45])\nax_2nd_b = fig.add_axes([0.05, 0.05, 0.45, 0.45])\nax_1st_f = fig.add_axes([0.52, 0.52, 0.45, 0.45])\nax_2nd_f = fig.add_axes([0.52, 0.05, 0.45, 0.45])\nax_1st_b.set_title(\"Backward advection for each time step\")\nax_1st_f.set_title(\"Forward advection for each time step\")\n\n\ndef color_alpha(target, pct, vmin=5, vmax=80):\n color = cmap(n.segment[target])\n # We will hide under 5 % and from 80% to 100 % it will be 1\n alpha = (pct - vmin) / (vmax - vmin)\n alpha[alpha < 0] = 0\n alpha[alpha > 1] = 1\n color[:, 3] = alpha\n return color\n\n\nkw = dict(\n name=None, yfield=\"longitude\", event=False, zorder=-100, s=(n.speed_area / 20e6)\n)\nn.scatter_timeline(ax_1st_b, c=color_alpha(i_target_b.T[0], pct_target_b.T[0]), **kw)\nn.scatter_timeline(ax_2nd_b, c=color_alpha(i_target_b.T[1], pct_target_b.T[1]), **kw)\nn.scatter_timeline(ax_1st_f, c=color_alpha(i_target_f.T[0], pct_target_f.T[0]), **kw)\nn.scatter_timeline(ax_2nd_f, c=color_alpha(i_target_f.T[1], pct_target_f.T[1]), **kw)\nfor ax in (ax_1st_b, ax_2nd_b, ax_1st_f, ax_2nd_f):\n n.display_timeline(ax, field=\"longitude\", marker=\"+\", lw=2, markersize=5)\n ax.grid()" |
| 134 | + "fig = plt.figure(figsize=(10, 10))\nax_1st_b = fig.add_axes([0.05, 0.52, 0.45, 0.45])\nax_2nd_b = fig.add_axes([0.05, 0.05, 0.45, 0.45])\nax_1st_f = fig.add_axes([0.52, 0.52, 0.45, 0.45])\nax_2nd_f = fig.add_axes([0.52, 0.05, 0.45, 0.45])\nax_1st_b.set_title(\"Backward advection for each time step\")\nax_1st_f.set_title(\"Forward advection for each time step\")\nax_1st_b.set_ylabel(\"Color -> First target\\nLatitude\")\nax_2nd_b.set_ylabel(\"Color -> Secondary target\\nLatitude\")\nax_2nd_b.set_xlabel(\"Julian days\"), ax_2nd_f.set_xlabel(\"Julian days\")\nax_1st_f.set_yticks([]), ax_2nd_f.set_yticks([])\nax_1st_f.set_xticks([]), ax_1st_b.set_xticks([])\n\n\ndef color_alpha(target, pct, vmin=5, vmax=80):\n color = cmap(n.segment[target])\n # We will hide under 5 % and from 80% to 100 % it will be 1\n alpha = (pct - vmin) / (vmax - vmin)\n alpha[alpha < 0] = 0\n alpha[alpha > 1] = 1\n color[:, 3] = alpha\n return color\n\n\nkw = dict(\n name=None, yfield=\"longitude\", event=False, zorder=-100, s=(n.speed_area / 20e6)\n)\nn.scatter_timeline(ax_1st_b, c=color_alpha(i_target_b.T[0], pct_target_b.T[0]), **kw)\nn.scatter_timeline(ax_2nd_b, c=color_alpha(i_target_b.T[1], pct_target_b.T[1]), **kw)\nn.scatter_timeline(ax_1st_f, c=color_alpha(i_target_f.T[0], pct_target_f.T[0]), **kw)\nn.scatter_timeline(ax_2nd_f, c=color_alpha(i_target_f.T[1], pct_target_f.T[1]), **kw)\nfor ax in (ax_1st_b, ax_2nd_b, ax_1st_f, ax_2nd_f):\n n.display_timeline(ax, field=\"longitude\", marker=\"+\", lw=2, markersize=5)\n ax.grid()" |
135 | 135 | ]
|
136 | 136 | }
|
137 | 137 | ],
|
|
151 | 151 | "name": "python",
|
152 | 152 | "nbconvert_exporter": "python",
|
153 | 153 | "pygments_lexer": "ipython3",
|
154 |
| - "version": "3.7.9" |
| 154 | + "version": "3.7.7" |
155 | 155 | }
|
156 | 156 | },
|
157 | 157 | "nbformat": 4,
|
|
0 commit comments