|
| 1 | +""" |
| 2 | +Network segmentation process |
| 3 | +============================ |
| 4 | +""" |
| 5 | + |
| 6 | +import re |
| 7 | + |
| 8 | +from matplotlib import pyplot as plt |
| 9 | +from matplotlib.animation import FuncAnimation |
| 10 | +from matplotlib.colors import ListedColormap |
| 11 | +from numpy import ones |
| 12 | + |
| 13 | +import py_eddy_tracker.gui |
| 14 | +from py_eddy_tracker import data |
| 15 | +from py_eddy_tracker.observations.tracking import TrackEddiesObservations |
| 16 | + |
| 17 | + |
| 18 | +# %% |
| 19 | +class VideoAnimation(FuncAnimation): |
| 20 | + def _repr_html_(self, *args, **kwargs): |
| 21 | + """To get video in html and have a player""" |
| 22 | + content = self.to_html5_video() |
| 23 | + return re.sub( |
| 24 | + 'width="[0-9]*"\sheight="[0-9]*"', 'width="100%" height="100%"', content |
| 25 | + ) |
| 26 | + |
| 27 | + def save(self, *args, **kwargs): |
| 28 | + if args[0].endswith("gif"): |
| 29 | + # In this case gif is use to create thumbnail which are not use but consume same time than video |
| 30 | + # So we create an empty file, to save time |
| 31 | + with open(args[0], "w") as _: |
| 32 | + pass |
| 33 | + return |
| 34 | + return super().save(*args, **kwargs) |
| 35 | + |
| 36 | + |
| 37 | +# %% |
| 38 | +# Overlaod of class to pick up |
| 39 | +TRACKS = list() |
| 40 | + |
| 41 | + |
| 42 | +class MyTrack(TrackEddiesObservations): |
| 43 | + @staticmethod |
| 44 | + def get_next_obs(i_current, ids, x, y, time_s, time_e, time_ref, window, **kwargs): |
| 45 | + TRACKS.append(ids["track"].copy()) |
| 46 | + return TrackEddiesObservations.get_next_obs( |
| 47 | + i_current, ids, x, y, time_s, time_e, time_ref, window, **kwargs |
| 48 | + ) |
| 49 | + |
| 50 | + |
| 51 | +# %% |
| 52 | +# Load data |
| 53 | +# --------- |
| 54 | +# Load data where observations are put in same network but no segmentation |
| 55 | +e = MyTrack.load_file(data.get_path("c568803.nc")) |
| 56 | +# FIXME : Must be rewrote |
| 57 | +e.lon[:] = (e.lon + 180) % 360 - 180 |
| 58 | +e.contour_lon_e[:] = ((e.contour_lon_e.T - e.lon + 180) % 360 - 180 + e.lon).T |
| 59 | +e.contour_lon_s[:] = ((e.contour_lon_s.T - e.lon + 180) % 360 - 180 + e.lon).T |
| 60 | +# %% |
| 61 | +# Do segmentation |
| 62 | +# --------------- |
| 63 | +# Segmentation based on maximum overlap, temporal window for candidates = 5 days |
| 64 | +matrix = e.split_network(intern=False, window=5) |
| 65 | + |
| 66 | + |
| 67 | +# %% |
| 68 | +# Anim |
| 69 | +# ---- |
| 70 | +def update(i_frame): |
| 71 | + tr = TRACKS[i_frame] |
| 72 | + mappable_tracks.set_array(tr) |
| 73 | + s = 80 * ones(tr.shape) |
| 74 | + s[tr == 0] = 4 |
| 75 | + mappable_tracks.set_sizes(s) |
| 76 | + return (mappable_tracks,) |
| 77 | + |
| 78 | + |
| 79 | +fig = plt.figure(figsize=(15, 8), dpi=60) |
| 80 | +ax = fig.add_axes([0.04, 0.06, 0.94, 0.88], projection="full_axes") |
| 81 | +ax.set_title(f"{len(e)} observations to segment") |
| 82 | +ax.set_xlim(-13, 20), ax.set_ylim(-36.5, -20), ax.grid() |
| 83 | +vmax = TRACKS[-1].max() |
| 84 | +cmap = ListedColormap(["gray", *e.COLORS[:-1]], name="from_list", N=vmax) |
| 85 | +mappable_tracks = ax.scatter( |
| 86 | + e.lon, e.lat, c=TRACKS[0], cmap=cmap, vmin=0, vmax=vmax, s=20 |
| 87 | +) |
| 88 | +ani = VideoAnimation( |
| 89 | + fig, update, frames=range(1, len(TRACKS), 4), interval=125, blit=True |
| 90 | +) |
0 commit comments