|
5 | 5 |
|
6 | 6 | import logging
|
7 | 7 |
|
8 |
| -from netCDF4 import Dataset |
9 |
| -from numpy import arange, empty, zeros |
10 |
| -from Polygon import Polygon |
11 |
| - |
12 | 8 | from .. import EddyParser
|
13 |
| -from ..generic import build_index |
14 | 9 | from ..observations.network import Network
|
15 | 10 | from ..observations.tracking import TrackEddiesObservations
|
16 |
| -from ..poly import create_vertice_from_2darray, polygon_overlap |
17 | 11 |
|
18 | 12 | logger = logging.getLogger("pet")
|
19 | 13 |
|
@@ -57,246 +51,6 @@ def divide_network():
|
57 | 51 | include_vars=("time", "track", "latitude", "longitude", *contour_name),
|
58 | 52 | )
|
59 | 53 | ids = e.split_network(intern=args.intern, window=args.window)
|
60 |
| - |
61 |
| - |
62 |
| -def split_network(input, output): |
63 |
| - """Divide each group in track""" |
64 |
| - sl = slice(None) |
65 |
| - with Dataset(input) as h: |
66 |
| - group = h.variables["track"][sl] |
67 |
| - track_s, track_e, track_ref = build_index(group) |
68 |
| - # nb = track_e - track_s |
69 |
| - # m = nb > 1500 |
70 |
| - # print(group[track_s[m]]) |
71 |
| - |
72 |
| - track_id = 12003 |
73 |
| - sls = [slice(track_s[track_id - track_ref], track_e[track_id - track_ref], None)] |
74 |
| - for sl in sls: |
75 |
| - |
76 |
| - print(sl) |
77 |
| - with Dataset(input) as h: |
78 |
| - time = h.variables["time"][sl] |
79 |
| - group = h.variables["track"][sl] |
80 |
| - x = h.variables["effective_contour_longitude"][sl] |
81 |
| - y = h.variables["effective_contour_latitude"][sl] |
82 |
| - print(group[0]) |
83 |
| - ids = empty( |
84 |
| - time.shape, |
85 |
| - dtype=[ |
86 |
| - ("group", group.dtype), |
87 |
| - ("time", time.dtype), |
88 |
| - ("track", "u2"), |
89 |
| - ("previous_cost", "f4"), |
90 |
| - ("next_cost", "f4"), |
91 |
| - ("previous_observation", "i4"), |
92 |
| - ("next_observation", "i4"), |
93 |
| - ], |
94 |
| - ) |
95 |
| - ids["group"] = group |
96 |
| - ids["time"] = time |
97 |
| - # To store id track |
98 |
| - ids["track"] = 0 |
99 |
| - ids["previous_cost"] = 0 |
100 |
| - ids["next_cost"] = 0 |
101 |
| - ids["previous_observation"] = -1 |
102 |
| - ids["next_observation"] = -1 |
103 |
| - # Cost with previous |
104 |
| - track_start, track_end, track_ref = build_index(group) |
105 |
| - for i0, i1 in zip(track_start, track_end): |
106 |
| - if (i1 - i0) == 0 or group[i0] == Network.NOGROUP: |
107 |
| - continue |
108 |
| - sl_group = slice(i0, i1) |
109 |
| - set_tracks( |
110 |
| - x[sl_group], |
111 |
| - y[sl_group], |
112 |
| - time[sl_group], |
113 |
| - i0, |
114 |
| - ids["track"][sl_group], |
115 |
| - ids["previous_cost"][sl_group], |
116 |
| - ids["next_cost"][sl_group], |
117 |
| - ids["previous_observation"][sl_group], |
118 |
| - ids["next_observation"][sl_group], |
119 |
| - window=5, |
120 |
| - ) |
121 |
| - |
122 |
| - new_i = ids.argsort(order=("group", "track", "time")) |
123 |
| - ids_sort = ids[new_i] |
124 |
| - # To be able to follow indices sorting |
125 |
| - reverse_sort = empty(new_i.shape[0], dtype="u4") |
126 |
| - reverse_sort[new_i] = arange(new_i.shape[0]) |
127 |
| - # Redirect indices |
128 |
| - m = ids_sort["next_observation"] != -1 |
129 |
| - ids_sort["next_observation"][m] = reverse_sort[ids_sort["next_observation"][m]] |
130 |
| - m = ids_sort["previous_observation"] != -1 |
131 |
| - ids_sort["previous_observation"][m] = reverse_sort[ |
132 |
| - ids_sort["previous_observation"][m] |
133 |
| - ] |
134 |
| - # print(ids_sort) |
135 |
| - display_network( |
136 |
| - x[new_i], |
137 |
| - y[new_i], |
138 |
| - ids_sort["track"], |
139 |
| - ids_sort["time"], |
140 |
| - ids_sort["next_cost"], |
141 |
| - ) |
142 |
| - |
143 |
| - |
144 |
| -def next_obs( |
145 |
| - i_current, next_cost, previous_cost, polygons, t, t_start, t_end, t_ref, window |
146 |
| -): |
147 |
| - t_max = t_end.shape[0] - 1 |
148 |
| - t_cur = t[i_current] |
149 |
| - t0, t1 = t_cur + 1 - t_ref, t_cur + window - t_ref |
150 |
| - if t0 > t_max: |
151 |
| - return -1 |
152 |
| - t1 = min(t1, t_max) |
153 |
| - for t_step in range(t0, t1 + 1): |
154 |
| - i0, i1 = t_start[t_step], t_end[t_step] |
155 |
| - # No observation at the time step ! |
156 |
| - if i0 == i1: |
157 |
| - continue |
158 |
| - sl = slice(i0, i1) |
159 |
| - # Intersection / union, to be able to separte in case of multiple inside |
160 |
| - c = polygon_overlap(polygons[i_current], polygons[sl]) |
161 |
| - # We remove low overlap |
162 |
| - if (c > 0.1).sum() > 1: |
163 |
| - print(c) |
164 |
| - c[c < 0.1] = 0 |
165 |
| - # We get index of maximal overlap |
166 |
| - i = c.argmax() |
167 |
| - c_i = c[i] |
168 |
| - # No overlap found |
169 |
| - if c_i == 0: |
170 |
| - continue |
171 |
| - target = i0 + i |
172 |
| - # Check if candidate is already used |
173 |
| - c_target = previous_cost[target] |
174 |
| - if (c_target != 0 and c_target < c_i) or c_target == 0: |
175 |
| - previous_cost[target] = c_i |
176 |
| - next_cost[i_current] = c_i |
177 |
| - return target |
178 |
| - return -1 |
179 |
| - |
180 |
| - |
181 |
| -def set_tracks( |
182 |
| - x, |
183 |
| - y, |
184 |
| - t, |
185 |
| - ref_index, |
186 |
| - track, |
187 |
| - previous_cost, |
188 |
| - next_cost, |
189 |
| - previous_observation, |
190 |
| - next_observation, |
191 |
| - window, |
192 |
| -): |
193 |
| - # Will split one group in tracks |
194 |
| - t_start, t_end, t_ref = build_index(t) |
195 |
| - nb = x.shape[0] |
196 |
| - used = zeros(nb, dtype="bool") |
197 |
| - current_track = 1 |
198 |
| - # build all polygon (need to check if wrap is needed) |
199 |
| - polygons = list() |
200 |
| - for i in range(nb): |
201 |
| - polygons.append(Polygon(create_vertice_from_2darray(x, y, i))) |
202 |
| - |
203 |
| - for i in range(nb): |
204 |
| - # If observation already in one track, we go to the next one |
205 |
| - if used[i]: |
206 |
| - continue |
207 |
| - build_track( |
208 |
| - i, |
209 |
| - current_track, |
210 |
| - used, |
211 |
| - track, |
212 |
| - previous_observation, |
213 |
| - next_observation, |
214 |
| - ref_index, |
215 |
| - next_cost, |
216 |
| - previous_cost, |
217 |
| - polygons, |
218 |
| - t, |
219 |
| - t_start, |
220 |
| - t_end, |
221 |
| - t_ref, |
222 |
| - window, |
223 |
| - ) |
224 |
| - current_track += 1 |
225 |
| - |
226 |
| - |
227 |
| -def build_track( |
228 |
| - first_index, |
229 |
| - track_id, |
230 |
| - used, |
231 |
| - track, |
232 |
| - previous_observation, |
233 |
| - next_observation, |
234 |
| - ref_index, |
235 |
| - next_cost, |
236 |
| - previous_cost, |
237 |
| - *args, |
238 |
| -): |
239 |
| - i_next = first_index |
240 |
| - while i_next != -1: |
241 |
| - # Flag |
242 |
| - used[i_next] = True |
243 |
| - # Assign id |
244 |
| - track[i_next] = track_id |
245 |
| - # Search next |
246 |
| - i_next_ = next_obs(i_next, next_cost, previous_cost, *args) |
247 |
| - if i_next_ == -1: |
248 |
| - break |
249 |
| - next_observation[i_next] = i_next_ + ref_index |
250 |
| - if not used[i_next_]: |
251 |
| - previous_observation[i_next_] = i_next + ref_index |
252 |
| - # Target was previously used |
253 |
| - if used[i_next_]: |
254 |
| - if next_cost[i_next] == previous_cost[i_next_]: |
255 |
| - m = track[i_next_:] == track[i_next_] |
256 |
| - track[i_next_:][m] = track_id |
257 |
| - previous_observation[i_next_] = i_next + ref_index |
258 |
| - i_next_ = -1 |
259 |
| - i_next = i_next_ |
260 |
| - |
261 |
| - |
262 |
| -def display_network(x, y, tr, t, c): |
263 |
| - tr0, tr1, t_ref = build_index(tr) |
264 |
| - import matplotlib.pyplot as plt |
265 |
| - |
266 |
| - cmap = plt.get_cmap("jet") |
267 |
| - from ..generic import flatten_line_matrix |
268 |
| - |
269 |
| - fig = plt.figure(figsize=(20, 10)) |
270 |
| - ax = fig.add_subplot(121, aspect="equal") |
271 |
| - ax.grid() |
272 |
| - ax_time = fig.add_subplot(122) |
273 |
| - ax_time.grid() |
274 |
| - i = 0 |
275 |
| - for s, e in zip(tr0, tr1): |
276 |
| - if s == e: |
277 |
| - continue |
278 |
| - sl = slice(s, e) |
279 |
| - color = cmap((tr[s] - tr[tr0[0]]) / (tr[tr0[-1]] - tr[tr0[0]])) |
280 |
| - ax.plot( |
281 |
| - flatten_line_matrix(x[sl]), |
282 |
| - flatten_line_matrix(y[sl]), |
283 |
| - color=color, |
284 |
| - label=f"{tr[s]} - {e-s} obs from {t[s]} to {t[e-1]}", |
285 |
| - ) |
286 |
| - i += 1 |
287 |
| - ax_time.plot( |
288 |
| - t[sl], |
289 |
| - tr[s].repeat(e - s) + c[sl], |
290 |
| - color=color, |
291 |
| - label=f"{tr[s]} - {e-s} obs", |
292 |
| - lw=0.5, |
293 |
| - ) |
294 |
| - ax_time.plot(t[sl], tr[s].repeat(e - s), color=color, lw=1, marker="+") |
295 |
| - ax_time.text(t[s], tr[s] + 0.15, f"{x[s].mean():.2f}, {y[s].mean():.2f}") |
296 |
| - ax_time.axvline(t[s], color=".75", lw=0.5, ls="--", zorder=-10) |
297 |
| - ax_time.text( |
298 |
| - t[e - 1], tr[e - 1] - 0.25, f"{x[e-1].mean():.2f}, {y[e-1].mean():.2f}" |
299 |
| - ) |
300 |
| - ax.legend() |
301 |
| - ax_time.legend() |
302 |
| - plt.show() |
| 54 | + e = e.add_fields(("sub_track",)) |
| 55 | + e.sub_track[:] = ids["track"] |
| 56 | + e.write_file(filename=args.out) |
0 commit comments