| 
29 | 29 | 
  | 
30 | 30 | """  | 
31 | 31 | from numpy import zeros, empty, nan, arange, interp, where, unique, \  | 
32 |  | -    ma, concatenate  | 
 | 32 | +    ma, concatenate, cos, radians, isnan  | 
33 | 33 | from netCDF4 import Dataset  | 
34 |  | -from py_eddy_tracker.tools import distance_matrix  | 
 | 34 | +from py_eddy_tracker.tools import distance_matrix, distance_vector  | 
35 | 35 | from shapely.geometry import Polygon  | 
36 | 36 | from shapely.geos import TopologicalError  | 
37 | 37 | from . import VAR_DESCR, VAR_DESCR_inv  | 
@@ -280,27 +280,68 @@ def cost_function(self, records_in, records_out, distance):  | 
280 | 280 |         cost += (distance / 125) ** 2  | 
281 | 281 |         cost **= 0.5  | 
282 | 282 |         # Mask value superior at 60 % of variation  | 
283 |  | -        return ma.array(cost, mask=cost > 0.6)  | 
 | 283 | +        # return ma.array(cost, mask=cost > 0.6)  | 
 | 284 | +        return cost  | 
 | 285 | + | 
 | 286 | +    def circle_mask(self, other, radius=100):  | 
 | 287 | +        """Return a mask of available link"""  | 
 | 288 | +        return self.distance(other) < radius  | 
 | 289 | + | 
 | 290 | +    def fixed_ellipsoid_mask(self, other, minor=50, major=100, only_east=False):  | 
 | 291 | +        dist = self.distance(other)  | 
 | 292 | +        accepted = dist < minor  | 
 | 293 | +        rejected = dist > major   | 
 | 294 | +        rejected += isnan(dist)  | 
 | 295 | + | 
 | 296 | +        # All obs we are not in rejected and accepted, there are between  | 
 | 297 | +        # two circle  | 
 | 298 | +        needs_investigation = - (rejected + accepted)  | 
 | 299 | +        index_self, index_other = where(needs_investigation)  | 
 | 300 | +          | 
 | 301 | +        nb_case = index_self.shape[0]  | 
 | 302 | +        if nb_case != 0:  | 
 | 303 | +            c_degree = ((major ** 2 - minor ** 2) ** .5) / (111.3 * cos(radians(self.obs['lat'][index_self])))  | 
 | 304 | +              | 
 | 305 | +            lon_self = self.obs['lon'][index_self]  | 
 | 306 | +            lon_left_f = lon_self - c_degree  | 
 | 307 | +            lon_right_f = lon_self + c_degree  | 
 | 308 | +              | 
 | 309 | +            dist_left_f = empty(nb_case, dtype='f8') + nan  | 
 | 310 | +            distance_vector(  | 
 | 311 | +                lon_left_f, self.obs['lat'][index_self],  | 
 | 312 | +                other.obs['lon'][index_other], other.obs['lat'][index_other],  | 
 | 313 | +                dist_left_f)  | 
 | 314 | +            dist_right_f = empty(nb_case, dtype='f8') + nan  | 
 | 315 | +            distance_vector(  | 
 | 316 | +                lon_right_f, self.obs['lat'][index_self],  | 
 | 317 | +                other.obs['lon'][index_other], other.obs['lat'][index_other],  | 
 | 318 | +                dist_right_f)  | 
 | 319 | +            dist_2a = (dist_left_f + dist_right_f) / 1000  | 
 | 320 | + | 
 | 321 | +            accepted[index_self, index_other] = dist_2a < (2 * major)  | 
 | 322 | +            if only_east:  | 
 | 323 | +                d_lon = (other.obs['lon'][index_other] - lon_self + 180) % 360 - 180  | 
 | 324 | +                mask = d_lon < 0  | 
 | 325 | +                accepted[index_self[mask], index_other[mask]] = False  | 
 | 326 | +        return accepted  | 
284 | 327 | 
 
  | 
285 | 328 |     def tracking(self, other):  | 
286 | 329 |         """Track obs between self and other  | 
287 | 330 |         """  | 
288 | 331 |         dist = self.distance(other)  | 
289 | 332 |         # Links available which are close (circle area selection)  | 
290 |  | -        mask_accept_dist = dist < 125  | 
 | 333 | +        mask_accept_dist = self.circle_mask(other, radius=125)  | 
 | 334 | +        # mask_accept_dist = self.fixed_ellipsoid_mask(other)  | 
291 | 335 |         indexs_closest = where(mask_accept_dist)  | 
292 |  | -        cost_values = self.cost_function2(  | 
 | 336 | + | 
 | 337 | +        cost_values = self.cost_function(  | 
293 | 338 |             self.obs[indexs_closest[0]],  | 
294 | 339 |             other.obs[indexs_closest[1]],  | 
295 | 340 |             dist[mask_accept_dist])  | 
296 | 341 | 
 
  | 
297 |  | -        cost_mat = ma.empty(dist.shape, dtype='f4')  | 
 | 342 | +        cost_mat = ma.empty(mask_accept_dist.shape, dtype='f4')  | 
298 | 343 |         cost_mat.mask = -mask_accept_dist  | 
299 | 344 |         cost_mat[mask_accept_dist] = cost_values  | 
300 |  | -        # Links available which respect a maximal cost  | 
301 |  | -        # cost = dist  | 
302 |  | -        # mask_accept_cost = cost < 100  | 
303 |  | -        # cost = ma.array(cost, mask=-mask_accept_cost, dtype='i2')  | 
304 | 345 | 
 
  | 
305 | 346 |         mask_accept_cost = -cost_mat.mask  | 
306 | 347 |         cost = cost_mat  | 
 | 
0 commit comments