|
| 1 | +""" |
| 2 | +Replay segmentation |
| 3 | +=================== |
| 4 | +Case from figure 10 from https://doi.org/10.1002/2017JC013158 |
| 5 | +
|
| 6 | +""" |
| 7 | +from datetime import datetime, timedelta |
| 8 | + |
| 9 | +import numpy as np |
| 10 | +from matplotlib import pyplot as plt |
| 11 | +from matplotlib.animation import FuncAnimation |
| 12 | +from matplotlib.ticker import FuncFormatter |
| 13 | + |
| 14 | +import py_eddy_tracker.gui |
| 15 | +from py_eddy_tracker.appli.gui import Anim |
| 16 | +from py_eddy_tracker.observations.network import NetworkObservations |
| 17 | +from py_eddy_tracker.observations.tracking import TrackEddiesObservations |
| 18 | + |
| 19 | + |
| 20 | +# %% |
| 21 | +# Function used to do quick display |
| 22 | +class VideoAnimation(FuncAnimation): |
| 23 | + def _repr_html_(self, *args, **kwargs): |
| 24 | + """To get video in html and have a player""" |
| 25 | + return self.to_html5_video() |
| 26 | + |
| 27 | + def save(self, *args, **kwargs): |
| 28 | + if args[0].endswith("gif"): |
| 29 | + # In this case gif is use to create thumbnail which are not use but consume same time than video |
| 30 | + # So we create an empty file, to save time |
| 31 | + with open(args[0], "w") as h: |
| 32 | + pass |
| 33 | + return |
| 34 | + return super().save(*args, **kwargs) |
| 35 | + |
| 36 | + |
| 37 | +@FuncFormatter |
| 38 | +def formatter(x, pos): |
| 39 | + return (timedelta(x) + datetime(1950, 1, 1)).strftime("%d/%m/%Y") |
| 40 | + |
| 41 | + |
| 42 | +def start_axes(title=""): |
| 43 | + fig = plt.figure(figsize=(13, 6)) |
| 44 | + ax = fig.add_axes([0.03, 0.03, 0.90, 0.94], projection="full_axes") |
| 45 | + ax.set_xlim(19, 29), ax.set_ylim(31, 35.5) |
| 46 | + ax.set_aspect("equal") |
| 47 | + ax.set_title(title, weight="bold") |
| 48 | + ax.update_env() |
| 49 | + return ax |
| 50 | + |
| 51 | + |
| 52 | +def timeline_axes(title=""): |
| 53 | + fig = plt.figure(figsize=(15, 5)) |
| 54 | + ax = fig.add_axes([0.04, 0.06, 0.89, 0.88]) |
| 55 | + ax.set_title(title, weight="bold") |
| 56 | + ax.xaxis.set_major_formatter(formatter), ax.grid() |
| 57 | + return ax |
| 58 | + |
| 59 | + |
| 60 | +def update_axes(ax, mappable=None): |
| 61 | + ax.grid(True) |
| 62 | + if mappable: |
| 63 | + return plt.colorbar(mappable, cax=ax.figure.add_axes([0.94, 0.05, 0.01, 0.9])) |
| 64 | + |
| 65 | + |
| 66 | +# %% |
| 67 | +# Class for new_segmentation |
| 68 | +# -------------------------- |
| 69 | +# The oldest win |
| 70 | +class MyTrackEddiesObservations(TrackEddiesObservations): |
| 71 | + __slots__ = tuple() |
| 72 | + |
| 73 | + @classmethod |
| 74 | + def follow_obs(cls, i_next, track_id, used, ids, *args, **kwargs): |
| 75 | + """ |
| 76 | + Method to overwrite behaviour in merging. |
| 77 | +
|
| 78 | + We will give the point to the older one |
| 79 | + """ |
| 80 | + while i_next != -1: |
| 81 | + # Flag |
| 82 | + used[i_next] = True |
| 83 | + # Assign id |
| 84 | + ids["track"][i_next] = track_id |
| 85 | + # Search next |
| 86 | + i_next_ = cls.get_next_obs(i_next, ids, *args, **kwargs) |
| 87 | + if i_next_ == -1: |
| 88 | + break |
| 89 | + ids["next_obs"][i_next] = i_next_ |
| 90 | + # Target was previously used |
| 91 | + if used[i_next_]: |
| 92 | + # if ids["next_cost"][i_next] == ids["previous_cost"][i_next_]: |
| 93 | + # print(ids[i_next]) |
| 94 | + # print(ids[i_next_]) |
| 95 | + # m = ids["track"][i_next_:] == ids["track"][i_next_] |
| 96 | + # ids["track"][i_next_:][m] = track_id |
| 97 | + # ids["previous_obs"][i_next_] = i_next |
| 98 | + i_next_ = -1 |
| 99 | + else: |
| 100 | + ids["previous_obs"][i_next_] = i_next |
| 101 | + i_next = i_next_ |
| 102 | + |
| 103 | + |
| 104 | +def get_obs(dataset): |
| 105 | + "Function to isolate a specific obs" |
| 106 | + return np.where( |
| 107 | + (dataset.lat > 33) |
| 108 | + * (dataset.lat < 34) |
| 109 | + * (dataset.lon > 22) |
| 110 | + * (dataset.lon < 23) |
| 111 | + * (dataset.time > 20630) |
| 112 | + * (dataset.time < 20650) |
| 113 | + )[0][0] |
| 114 | + |
| 115 | + |
| 116 | +# %% |
| 117 | +# Get original network, we will isolate only relative at order *2* |
| 118 | +n = NetworkObservations.load_file( |
| 119 | + "/tmp/Anticyclonic_seg.nc" |
| 120 | + # "/data/adelepoulle/work/Eddies/20201217_network_build/tracking/med/Anticyclonic_seg.nc" |
| 121 | +) |
| 122 | + |
| 123 | +n = n.extract_with_mask(n.track == n.track[get_obs(n)]) |
| 124 | +n_ = n.relative(get_obs(n), order=2) |
| 125 | + |
| 126 | +# %% |
| 127 | +ax = start_axes(n_.infos()) |
| 128 | +n_.plot(ax, color_cycle=n.COLORS) |
| 129 | +update_axes(ax) |
| 130 | +fig = plt.figure(figsize=(15, 5)) |
| 131 | +ax = fig.add_axes([0.04, 0.05, 0.92, 0.92]) |
| 132 | +ax.xaxis.set_major_formatter(formatter), ax.grid() |
| 133 | +_ = n_.display_timeline(ax) |
| 134 | + |
| 135 | +# %% |
| 136 | +# Run a new segmentation |
| 137 | +# ---------------------- |
| 138 | +e = n.astype(MyTrackEddiesObservations) |
| 139 | +e.obs.sort(order=("track", "time"), kind="stable") |
| 140 | +split_matrix = e.split_network(intern=False, window=7) |
| 141 | +n_ = NetworkObservations.from_split_network(e, split_matrix) |
| 142 | +n_ = n_.relative(get_obs(n_), order=2) |
| 143 | +n_.numbering_segment() |
| 144 | + |
| 145 | +# %% |
| 146 | +# New version |
| 147 | +# ----------- |
| 148 | +ax = start_axes(n_.infos()) |
| 149 | +n_.plot(ax, color_cycle=n_.COLORS) |
| 150 | +update_axes(ax) |
| 151 | +fig = plt.figure(figsize=(15, 5)) |
| 152 | +ax = fig.add_axes([0.04, 0.05, 0.92, 0.92]) |
| 153 | +ax.xaxis.set_major_formatter(formatter), ax.grid() |
| 154 | +_ = n_.display_timeline(ax) |
| 155 | + |
| 156 | +# %% |
| 157 | +# Parameter timeline |
| 158 | +# ------------------ |
| 159 | +kw = dict(s=35, cmap=plt.get_cmap("Spectral_r", 8), zorder=10) |
| 160 | +ax = timeline_axes() |
| 161 | +n_.median_filter(15, "time", "latitude") |
| 162 | +m = n_.scatter_timeline(ax, "shape_error_e", vmin=14, vmax=70, **kw, yfield="lat") |
| 163 | +cb = update_axes(ax, m["scatter"]) |
| 164 | +cb.set_label("Effective shape error") |
| 165 | + |
| 166 | +ax = timeline_axes() |
| 167 | +n_.median_filter(15, "time", "latitude") |
| 168 | +m = n_.scatter_timeline( |
| 169 | + ax, "shape_error_e", vmin=14, vmax=70, **kw, yfield="lat", method="all" |
| 170 | +) |
| 171 | +cb = update_axes(ax, m["scatter"]) |
| 172 | +cb.set_label("Effective shape error") |
| 173 | +ax.set_ylabel("Latitude") |
| 174 | + |
| 175 | +ax = timeline_axes() |
| 176 | +n_.median_filter(15, "time", "latitude") |
| 177 | +kw["s"] = (n_.radius_e * 1e-3) ** 2 / 30 ** 2 * 20 |
| 178 | +m = n_.scatter_timeline( |
| 179 | + ax, |
| 180 | + "shape_error_e", |
| 181 | + vmin=14, |
| 182 | + vmax=70, |
| 183 | + **kw, |
| 184 | + yfield="lon", |
| 185 | + method="all", |
| 186 | +) |
| 187 | +ax.set_ylabel("Longitude") |
| 188 | +cb = update_axes(ax, m["scatter"]) |
| 189 | +cb.set_label("Effective shape error") |
| 190 | + |
| 191 | +# %% |
| 192 | +# Cost association plot |
| 193 | +# --------------------- |
| 194 | +n_copy = n_.copy() |
| 195 | +n_copy.median_filter(2, "time", "next_cost") |
| 196 | +for b0, b1 in [ |
| 197 | + (datetime(i, 1, 1), datetime(i, 12, 31)) for i in (2004, 2005, 2006, 2007, 2008) |
| 198 | +]: |
| 199 | + |
| 200 | + ref, delta = datetime(1950, 1, 1), 20 |
| 201 | + b0_, b1_ = (b0 - ref).days, (b1 - ref).days |
| 202 | + ax = timeline_axes() |
| 203 | + ax.set_xlim(b0_ - delta, b1_ + delta) |
| 204 | + ax.set_ylim(0, 1) |
| 205 | + ax.axvline(b0_, color="k", lw=1.5, ls="--"), ax.axvline( |
| 206 | + b1_, color="k", lw=1.5, ls="--" |
| 207 | + ) |
| 208 | + n_copy.display_timeline(ax, field="next_cost", method="all", lw=4, markersize=8) |
| 209 | + |
| 210 | + n_.display_timeline(ax, field="next_cost", method="all", lw=0.5, markersize=0) |
0 commit comments