@@ -49,24 +49,25 @@ For using the opencv `dnn`-based object detection modules provided in this repos
4949
5050## How to use?: Examples  
5151
52- Please refer [ examples] ( https://github.com/adipandas/multi-object-tracker/tree/master/examples )  folder of this repository.
53- You can clone and run the examples as shown [ here] ( examples/readme.md ) .
54- 
55- The interface for each tracker is simple and similar.
52+ The interface for each tracker is simple and similar. Please refer the example template below.
5653
5754``` 
58- from mottrackers  import CentroidTracker # IOUTracker, CentroidKF_Tracker, SORT 
55+ from motrackers  import CentroidTracker # or  IOUTracker, CentroidKF_Tracker, SORT 
5956
6057input_data = ... 
6158detector = ... 
62- tracker = CentroidTracker(...) 
59+ tracker = CentroidTracker(...) # or IOUTracker(...), CentroidKF_Tracker(...), SORT(...)  
6360
6461while True: 
6562    done, image = <read(input_data)> 
6663    if done: 
6764        break 
6865
6966    detection_bboxes, detection_confidences, detection_class_ids = detector.detect(image) 
67+     # NOTE:  
68+     # * `detection_bboxes` are numpy.ndarray of shape (n, 4) with each row containing (bb_left, bb_top, bb_width, bb_height) 
69+     # * `detection_confidences` are numpy.ndarray of shape (n,); 
70+     # * `detection_class_ids` are numpy.ndarray of shape (n,). 
7071
7172    output_tracks = tracker.track(detection_bboxes, detection_confidences, detection_class_ids) 
7273     
@@ -78,6 +79,9 @@ while True:
7879        print(track) 
7980``` 
8081
82+ Please refer [ examples] ( https://github.com/adipandas/multi-object-tracker/tree/master/examples )  folder of this repository for more details.
83+ You can clone and run the examples as shown [ here] ( examples/readme.md ) .
84+ 
8185## Pretrained object detection models  
8286
8387You will have to download the pretrained weights for the neural-network models. 
0 commit comments