@@ -6,6 +6,12 @@ Object detection using deep learning and multi-object tracking
66
77[ ![ DOI] ( https://zenodo.org/badge/148338463.svg )] ( https://zenodo.org/badge/latestdoi/148338463 )
88
9+ ### Available Trackers
10+ ```
11+ SimpleTracker
12+
13+ SimpleTracker2
14+ ```
915
1016#### YOLO
1117Video Source: [ link] ( https://flic.kr/p/89KYXt )
@@ -39,54 +45,39 @@ pip install -e .
3945
4046### YOLO
4147
42- Do the following in the terminal:
48+ Do the following in the terminal to download a pretrained weights of YOLO :
4349```
4450cd ./pretrained_models/yolo_weights
4551sudo chmod +x ./get_yolo.sh
4652./get_yolo.sh
4753```
4854
49- The above commands will download the model and the config files in ` ./pretrained_models/yolo_weights ` .
50- These weights are to be used in ` examples/tracking-yolo-model.ipynb ` .
51-
52- - The video input can be specified in the cell named ` Initiate opencv video capture object ` in the notebook.
53- - To make the source as the webcam, use ` video_src=0 ` else provide the path of the video file (example: ` video_src="/path/of/videofile.mp4" ` ).
54-
55- Example video used in above demo was taken from [ here] ( https://flic.kr/p/L6qyxj )
56-
5755### TensorFlow model
5856
59- Do the following in the terminal:
57+ Do the following in the terminal to download a pretrained model :
6058```
6159cd ./pretrained_models/tensorflow_weights
6260sudo chmod +x ./get_ssd_model.sh
6361./get_ssd_model.sh
6462```
6563
66- This will download model and config files in ` ./pretrained_models/tensorflow_weights ` .
67- These will be used ` examples/tracking-tensorflow-ssd_mobilenet_v2_coco_2018_03_29.ipynb ` .
68-
6964** SSD-Mobilenet_v2_coco_2018_03_29** was used for this example.
7065Other networks can be downloaded and ran: Go through ` tracking-tensorflow-ssd_mobilenet_v2_coco_2018_03_29.ipynb ` for more details.
7166
72- - The video input can be specified in the cell named ` Initiate opencv video capture object ` in the notebook.
73- - To make the source as the webcam, use ` video_src=0 ` else provide the path of the video file (example: ` video_src="/path/of/videofile.mp4" ` ).
74-
75- Video used in SSD-Mobilenet multi-object detection and tracking can be found [ here] ( https://flic.kr/p/89KYXt )
76-
7767### Caffemodel
7868
79- Do the following in the terminal
69+ Do the following in the terminal to download a pretrained model:
8070```
8171cd ./pretrained_models/caffemodel_weights
8272sudo chmod +x ./get_caffemodel.sh
8373./get_caffemodel.sh
8474```
8575
86- This will download model and config files in ` ./pretrained_models/caffemodel_weights ` .
87- These will be used ` examples/tracking-caffe-model-mobilenetSSD.ipynb ` .
76+ This is a MobileNet-SSD caffemodel.
77+
78+ ### Examples and How to use:
8879
89- The caffemodel example provided here also uses MobileNet-SSD model for detection .
80+ For examples and how to use this repository, please refer [ examples/ ] ( examples/ ) folder .
9081
9182### References and Credits
9283This work is based on the following literature:
0 commit comments