@@ -49,24 +49,25 @@ For using the opencv `dnn`-based object detection modules provided in this repos
4949
5050## How to use?: Examples
5151
52- Please refer [ examples] ( https://github.com/adipandas/multi-object-tracker/tree/master/examples ) folder of this repository.
53- You can clone and run the examples as shown [ here] ( examples/readme.md ) .
54-
55- The interface for each tracker is simple and similar.
52+ The interface for each tracker is simple and similar. Please refer the example template below.
5653
5754```
58- from mottrackers import CentroidTracker # IOUTracker, CentroidKF_Tracker, SORT
55+ from motrackers import CentroidTracker # or IOUTracker, CentroidKF_Tracker, SORT
5956
6057input_data = ...
6158detector = ...
62- tracker = CentroidTracker(...)
59+ tracker = CentroidTracker(...) # or IOUTracker(...), CentroidKF_Tracker(...), SORT(...)
6360
6461while True:
6562 done, image = <read(input_data)>
6663 if done:
6764 break
6865
6966 detection_bboxes, detection_confidences, detection_class_ids = detector.detect(image)
67+ # NOTE:
68+ # * `detection_bboxes` are numpy.ndarray of shape (n, 4) with each row containing (bb_left, bb_top, bb_width, bb_height)
69+ # * `detection_confidences` are numpy.ndarray of shape (n,);
70+ # * `detection_class_ids` are numpy.ndarray of shape (n,).
7071
7172 output_tracks = tracker.track(detection_bboxes, detection_confidences, detection_class_ids)
7273
@@ -78,6 +79,9 @@ while True:
7879 print(track)
7980```
8081
82+ Please refer [ examples] ( https://github.com/adipandas/multi-object-tracker/tree/master/examples ) folder of this repository for more details.
83+ You can clone and run the examples as shown [ here] ( examples/readme.md ) .
84+
8185## Pretrained object detection models
8286
8387You will have to download the pretrained weights for the neural-network models.
0 commit comments