|
| 1 | +""" |
| 2 | +Eddy detection on SLA and ADT |
| 3 | +============================= |
| 4 | +
|
| 5 | +""" |
| 6 | +from datetime import datetime |
| 7 | +from matplotlib import pyplot as plt |
| 8 | +from py_eddy_tracker.dataset.grid import RegularGridDataset |
| 9 | +from py_eddy_tracker import data |
| 10 | + |
| 11 | + |
| 12 | +# %% |
| 13 | +def start_axes(title): |
| 14 | + fig = plt.figure(figsize=(13, 5)) |
| 15 | + ax = fig.add_axes([0.03, 0.03, 0.90, 0.94]) |
| 16 | + ax.set_xlim(-6, 36.5), ax.set_ylim(30, 46) |
| 17 | + ax.set_aspect("equal") |
| 18 | + ax.set_title(title) |
| 19 | + return ax |
| 20 | + |
| 21 | + |
| 22 | +def update_axes(ax, mappable=None): |
| 23 | + ax.grid() |
| 24 | + if mappable: |
| 25 | + plt.colorbar(mappable, cax=ax.figure.add_axes([0.95, 0.05, 0.01, 0.9])) |
| 26 | + |
| 27 | + |
| 28 | +# %% |
| 29 | +# Load Input grid, ADT will be used to detect eddies |
| 30 | + |
| 31 | +g = RegularGridDataset( |
| 32 | + data.get_path("dt_med_allsat_phy_l4_20160515_20190101.nc"), "longitude", "latitude", |
| 33 | +) |
| 34 | +g.add_uv("adt", "ugos", "vgos") |
| 35 | +g.add_uv("sla", "ugosa", "vgosa") |
| 36 | +wavelength = 400 |
| 37 | +g.copy("adt", "adt_raw") |
| 38 | +g.copy("sla", "sla_raw") |
| 39 | +g.bessel_high_filter("adt", wavelength) |
| 40 | +g.bessel_high_filter("sla", wavelength) |
| 41 | +date = datetime(2016, 5, 15) |
| 42 | + |
| 43 | +# %% |
| 44 | +kwargs_a_adt = dict(lw=0.5, label="Anticyclonic ADT", ref=-10, color="k") |
| 45 | +kwargs_c_adt = dict(lw=0.5, label="Cyclonic ADT", ref=-10, color="r") |
| 46 | +kwargs_a_sla = dict(lw=0.5, label="Anticyclonic SLA", ref=-10, color="g") |
| 47 | +kwargs_c_sla = dict(lw=0.5, label="Cyclonic SLA", ref=-10, color="b") |
| 48 | + |
| 49 | +# %% |
| 50 | +# Run algorithm of detection |
| 51 | +a_adt, c_adt = g.eddy_identification("adt", "ugos", "vgos", date, 0.002) |
| 52 | +a_sla, c_sla = g.eddy_identification("sla", "ugosa", "vgosa", date, 0.002) |
| 53 | + |
| 54 | +# %% |
| 55 | +# over filtered |
| 56 | +ax = start_axes(f"ADT (m) filtered ({wavelength}km)") |
| 57 | +m = g.display(ax, "adt", vmin=-0.15, vmax=0.15) |
| 58 | +a_adt.display(ax, **kwargs_a_adt), c_adt.display(ax, **kwargs_a_sla) |
| 59 | +ax.legend(), update_axes(ax, m) |
| 60 | + |
| 61 | +ax = start_axes(f"SLA (m) filtered ({wavelength}km)") |
| 62 | +m = g.display(ax, "sla", vmin=-0.15, vmax=0.15) |
| 63 | +a_sla.display(ax, **kwargs_c_adt), c_sla.display(ax, **kwargs_c_sla) |
| 64 | +ax.legend(), update_axes(ax, m) |
| 65 | + |
| 66 | +# %% |
| 67 | +# over raw |
| 68 | +ax = start_axes("ADT (m)") |
| 69 | +m = g.display(ax, "adt_raw", vmin=-0.15, vmax=0.15) |
| 70 | +a_adt.display(ax, **kwargs_a_adt), c_adt.display(ax, **kwargs_a_sla) |
| 71 | +ax.legend(), update_axes(ax, m) |
| 72 | + |
| 73 | +ax = start_axes("SLA (m)") |
| 74 | +m = g.display(ax, "sla_raw", vmin=-0.15, vmax=0.15) |
| 75 | +a_sla.display(ax, **kwargs_c_adt), c_sla.display(ax, **kwargs_c_sla) |
| 76 | +ax.legend(), update_axes(ax, m) |
| 77 | + |
| 78 | +# %% |
| 79 | +# Display detection |
| 80 | +ax = start_axes("Eddies detected") |
| 81 | +a_adt.display(ax, **kwargs_a_adt) |
| 82 | +a_sla.display(ax, **kwargs_c_adt) |
| 83 | +c_adt.display(ax, **kwargs_a_sla) |
| 84 | +c_sla.display(ax, **kwargs_c_sla) |
| 85 | +ax.legend() |
| 86 | +update_axes(ax) |
| 87 | + |
| 88 | +# %% |
| 89 | +# Match |
| 90 | +# ----------------------- |
| 91 | +# Where cyclone meet anticyclone |
| 92 | +i_c_adt, i_a_sla, c = c_adt.match(a_sla, 0.1) |
| 93 | +i_a_adt, i_c_sla, c = a_adt.match(c_sla, 0.1) |
| 94 | + |
| 95 | +ax = start_axes("Cyclone share area with anticyclone") |
| 96 | +a_adt.index(i_a_adt).display(ax, **kwargs_a_adt) |
| 97 | +c_adt.index(i_c_adt).display(ax, **kwargs_c_adt) |
| 98 | +a_sla.index(i_a_sla).display(ax, **kwargs_a_sla) |
| 99 | +c_sla.index(i_c_sla).display(ax, **kwargs_c_sla) |
| 100 | +ax.legend() |
| 101 | +update_axes(ax) |
| 102 | + |
| 103 | + |
| 104 | +# %% |
| 105 | +# Scatter plot |
| 106 | +# ------------ |
| 107 | +i_a_adt, i_a_sla, c = a_adt.match(a_sla, 0.1) |
| 108 | +i_c_adt, i_c_sla, c = c_adt.match(c_sla, 0.1) |
| 109 | + |
| 110 | +# %% |
| 111 | +# where is lonely eddies |
| 112 | +ax = start_axes("Eddies with no match") |
| 113 | +a_adt.index(i_a_adt, reverse=True).display(ax, **kwargs_a_adt) |
| 114 | +c_adt.index(i_c_adt, reverse=True).display(ax, **kwargs_c_adt) |
| 115 | +a_sla.index(i_a_sla, reverse=True).display(ax, **kwargs_a_sla) |
| 116 | +c_sla.index(i_c_sla, reverse=True).display(ax, **kwargs_c_sla) |
| 117 | +ax.legend() |
| 118 | +update_axes(ax) |
| 119 | + |
| 120 | +# %% |
| 121 | +fig = plt.figure(figsize=(12, 12)) |
| 122 | +fig.suptitle(f"Scatter plot (A : {i_a_adt.shape[0]}, C : {i_c_adt.shape[0]} matches)") |
| 123 | + |
| 124 | +for i, (label, field, factor, stop) in enumerate( |
| 125 | + ( |
| 126 | + ("speed radius (km)", "radius_s", 0.001, 80), |
| 127 | + ("outter radius (km)", "radius_e", 0.001, 120), |
| 128 | + ("amplitude (cm)", "amplitude", 100, 25), |
| 129 | + ("speed max (cm/s)", "speed_average", 100, 25), |
| 130 | + ) |
| 131 | +): |
| 132 | + ax = fig.add_subplot(2, 2, i + 1, title=label) |
| 133 | + ax.set_xlabel("Absolute Dynamic Topography") |
| 134 | + ax.set_ylabel("Sea Level Anomaly") |
| 135 | + |
| 136 | + ax.plot(a_adt[field][i_a_adt] * factor, a_sla[field][i_a_sla] * factor, "r.") |
| 137 | + ax.plot(c_adt[field][i_c_adt] * factor, c_sla[field][i_c_sla] * factor, "b.") |
| 138 | + ax.set_aspect("equal"), ax.grid() |
| 139 | + ax.plot((0, 1000), (0, 1000), "g") |
| 140 | + ax.set_xlim(0, stop), ax.set_ylim(0, stop) |
0 commit comments