|
5 | 5 |
|
6 | 6 | import logging |
7 | 7 |
|
8 | | -from netCDF4 import Dataset |
9 | | -from numpy import arange, empty, zeros |
10 | | -from Polygon import Polygon |
11 | | - |
12 | 8 | from .. import EddyParser |
13 | | -from ..generic import build_index |
14 | 9 | from ..observations.network import Network |
15 | 10 | from ..observations.tracking import TrackEddiesObservations |
16 | | -from ..poly import create_vertice_from_2darray, polygon_overlap |
17 | 11 |
|
18 | 12 | logger = logging.getLogger("pet") |
19 | 13 |
|
@@ -57,246 +51,6 @@ def divide_network(): |
57 | 51 | include_vars=("time", "track", "latitude", "longitude", *contour_name), |
58 | 52 | ) |
59 | 53 | ids = e.split_network(intern=args.intern, window=args.window) |
60 | | - |
61 | | - |
62 | | -def split_network(input, output): |
63 | | - """Divide each group in track""" |
64 | | - sl = slice(None) |
65 | | - with Dataset(input) as h: |
66 | | - group = h.variables["track"][sl] |
67 | | - track_s, track_e, track_ref = build_index(group) |
68 | | - # nb = track_e - track_s |
69 | | - # m = nb > 1500 |
70 | | - # print(group[track_s[m]]) |
71 | | - |
72 | | - track_id = 12003 |
73 | | - sls = [slice(track_s[track_id - track_ref], track_e[track_id - track_ref], None)] |
74 | | - for sl in sls: |
75 | | - |
76 | | - print(sl) |
77 | | - with Dataset(input) as h: |
78 | | - time = h.variables["time"][sl] |
79 | | - group = h.variables["track"][sl] |
80 | | - x = h.variables["effective_contour_longitude"][sl] |
81 | | - y = h.variables["effective_contour_latitude"][sl] |
82 | | - print(group[0]) |
83 | | - ids = empty( |
84 | | - time.shape, |
85 | | - dtype=[ |
86 | | - ("group", group.dtype), |
87 | | - ("time", time.dtype), |
88 | | - ("track", "u2"), |
89 | | - ("previous_cost", "f4"), |
90 | | - ("next_cost", "f4"), |
91 | | - ("previous_observation", "i4"), |
92 | | - ("next_observation", "i4"), |
93 | | - ], |
94 | | - ) |
95 | | - ids["group"] = group |
96 | | - ids["time"] = time |
97 | | - # To store id track |
98 | | - ids["track"] = 0 |
99 | | - ids["previous_cost"] = 0 |
100 | | - ids["next_cost"] = 0 |
101 | | - ids["previous_observation"] = -1 |
102 | | - ids["next_observation"] = -1 |
103 | | - # Cost with previous |
104 | | - track_start, track_end, track_ref = build_index(group) |
105 | | - for i0, i1 in zip(track_start, track_end): |
106 | | - if (i1 - i0) == 0 or group[i0] == Network.NOGROUP: |
107 | | - continue |
108 | | - sl_group = slice(i0, i1) |
109 | | - set_tracks( |
110 | | - x[sl_group], |
111 | | - y[sl_group], |
112 | | - time[sl_group], |
113 | | - i0, |
114 | | - ids["track"][sl_group], |
115 | | - ids["previous_cost"][sl_group], |
116 | | - ids["next_cost"][sl_group], |
117 | | - ids["previous_observation"][sl_group], |
118 | | - ids["next_observation"][sl_group], |
119 | | - window=5, |
120 | | - ) |
121 | | - |
122 | | - new_i = ids.argsort(order=("group", "track", "time")) |
123 | | - ids_sort = ids[new_i] |
124 | | - # To be able to follow indices sorting |
125 | | - reverse_sort = empty(new_i.shape[0], dtype="u4") |
126 | | - reverse_sort[new_i] = arange(new_i.shape[0]) |
127 | | - # Redirect indices |
128 | | - m = ids_sort["next_observation"] != -1 |
129 | | - ids_sort["next_observation"][m] = reverse_sort[ids_sort["next_observation"][m]] |
130 | | - m = ids_sort["previous_observation"] != -1 |
131 | | - ids_sort["previous_observation"][m] = reverse_sort[ |
132 | | - ids_sort["previous_observation"][m] |
133 | | - ] |
134 | | - # print(ids_sort) |
135 | | - display_network( |
136 | | - x[new_i], |
137 | | - y[new_i], |
138 | | - ids_sort["track"], |
139 | | - ids_sort["time"], |
140 | | - ids_sort["next_cost"], |
141 | | - ) |
142 | | - |
143 | | - |
144 | | -def next_obs( |
145 | | - i_current, next_cost, previous_cost, polygons, t, t_start, t_end, t_ref, window |
146 | | -): |
147 | | - t_max = t_end.shape[0] - 1 |
148 | | - t_cur = t[i_current] |
149 | | - t0, t1 = t_cur + 1 - t_ref, t_cur + window - t_ref |
150 | | - if t0 > t_max: |
151 | | - return -1 |
152 | | - t1 = min(t1, t_max) |
153 | | - for t_step in range(t0, t1 + 1): |
154 | | - i0, i1 = t_start[t_step], t_end[t_step] |
155 | | - # No observation at the time step ! |
156 | | - if i0 == i1: |
157 | | - continue |
158 | | - sl = slice(i0, i1) |
159 | | - # Intersection / union, to be able to separte in case of multiple inside |
160 | | - c = polygon_overlap(polygons[i_current], polygons[sl]) |
161 | | - # We remove low overlap |
162 | | - if (c > 0.1).sum() > 1: |
163 | | - print(c) |
164 | | - c[c < 0.1] = 0 |
165 | | - # We get index of maximal overlap |
166 | | - i = c.argmax() |
167 | | - c_i = c[i] |
168 | | - # No overlap found |
169 | | - if c_i == 0: |
170 | | - continue |
171 | | - target = i0 + i |
172 | | - # Check if candidate is already used |
173 | | - c_target = previous_cost[target] |
174 | | - if (c_target != 0 and c_target < c_i) or c_target == 0: |
175 | | - previous_cost[target] = c_i |
176 | | - next_cost[i_current] = c_i |
177 | | - return target |
178 | | - return -1 |
179 | | - |
180 | | - |
181 | | -def set_tracks( |
182 | | - x, |
183 | | - y, |
184 | | - t, |
185 | | - ref_index, |
186 | | - track, |
187 | | - previous_cost, |
188 | | - next_cost, |
189 | | - previous_observation, |
190 | | - next_observation, |
191 | | - window, |
192 | | -): |
193 | | - # Will split one group in tracks |
194 | | - t_start, t_end, t_ref = build_index(t) |
195 | | - nb = x.shape[0] |
196 | | - used = zeros(nb, dtype="bool") |
197 | | - current_track = 1 |
198 | | - # build all polygon (need to check if wrap is needed) |
199 | | - polygons = list() |
200 | | - for i in range(nb): |
201 | | - polygons.append(Polygon(create_vertice_from_2darray(x, y, i))) |
202 | | - |
203 | | - for i in range(nb): |
204 | | - # If observation already in one track, we go to the next one |
205 | | - if used[i]: |
206 | | - continue |
207 | | - build_track( |
208 | | - i, |
209 | | - current_track, |
210 | | - used, |
211 | | - track, |
212 | | - previous_observation, |
213 | | - next_observation, |
214 | | - ref_index, |
215 | | - next_cost, |
216 | | - previous_cost, |
217 | | - polygons, |
218 | | - t, |
219 | | - t_start, |
220 | | - t_end, |
221 | | - t_ref, |
222 | | - window, |
223 | | - ) |
224 | | - current_track += 1 |
225 | | - |
226 | | - |
227 | | -def build_track( |
228 | | - first_index, |
229 | | - track_id, |
230 | | - used, |
231 | | - track, |
232 | | - previous_observation, |
233 | | - next_observation, |
234 | | - ref_index, |
235 | | - next_cost, |
236 | | - previous_cost, |
237 | | - *args, |
238 | | -): |
239 | | - i_next = first_index |
240 | | - while i_next != -1: |
241 | | - # Flag |
242 | | - used[i_next] = True |
243 | | - # Assign id |
244 | | - track[i_next] = track_id |
245 | | - # Search next |
246 | | - i_next_ = next_obs(i_next, next_cost, previous_cost, *args) |
247 | | - if i_next_ == -1: |
248 | | - break |
249 | | - next_observation[i_next] = i_next_ + ref_index |
250 | | - if not used[i_next_]: |
251 | | - previous_observation[i_next_] = i_next + ref_index |
252 | | - # Target was previously used |
253 | | - if used[i_next_]: |
254 | | - if next_cost[i_next] == previous_cost[i_next_]: |
255 | | - m = track[i_next_:] == track[i_next_] |
256 | | - track[i_next_:][m] = track_id |
257 | | - previous_observation[i_next_] = i_next + ref_index |
258 | | - i_next_ = -1 |
259 | | - i_next = i_next_ |
260 | | - |
261 | | - |
262 | | -def display_network(x, y, tr, t, c): |
263 | | - tr0, tr1, t_ref = build_index(tr) |
264 | | - import matplotlib.pyplot as plt |
265 | | - |
266 | | - cmap = plt.get_cmap("jet") |
267 | | - from ..generic import flatten_line_matrix |
268 | | - |
269 | | - fig = plt.figure(figsize=(20, 10)) |
270 | | - ax = fig.add_subplot(121, aspect="equal") |
271 | | - ax.grid() |
272 | | - ax_time = fig.add_subplot(122) |
273 | | - ax_time.grid() |
274 | | - i = 0 |
275 | | - for s, e in zip(tr0, tr1): |
276 | | - if s == e: |
277 | | - continue |
278 | | - sl = slice(s, e) |
279 | | - color = cmap((tr[s] - tr[tr0[0]]) / (tr[tr0[-1]] - tr[tr0[0]])) |
280 | | - ax.plot( |
281 | | - flatten_line_matrix(x[sl]), |
282 | | - flatten_line_matrix(y[sl]), |
283 | | - color=color, |
284 | | - label=f"{tr[s]} - {e-s} obs from {t[s]} to {t[e-1]}", |
285 | | - ) |
286 | | - i += 1 |
287 | | - ax_time.plot( |
288 | | - t[sl], |
289 | | - tr[s].repeat(e - s) + c[sl], |
290 | | - color=color, |
291 | | - label=f"{tr[s]} - {e-s} obs", |
292 | | - lw=0.5, |
293 | | - ) |
294 | | - ax_time.plot(t[sl], tr[s].repeat(e - s), color=color, lw=1, marker="+") |
295 | | - ax_time.text(t[s], tr[s] + 0.15, f"{x[s].mean():.2f}, {y[s].mean():.2f}") |
296 | | - ax_time.axvline(t[s], color=".75", lw=0.5, ls="--", zorder=-10) |
297 | | - ax_time.text( |
298 | | - t[e - 1], tr[e - 1] - 0.25, f"{x[e-1].mean():.2f}, {y[e-1].mean():.2f}" |
299 | | - ) |
300 | | - ax.legend() |
301 | | - ax_time.legend() |
302 | | - plt.show() |
| 54 | + e = e.add_fields(("sub_track",)) |
| 55 | + e.sub_track[:] = ids["track"] |
| 56 | + e.write_file(filename=args.out) |
0 commit comments