|
1 |
| - |
| 1 | +# YOLO v7 + 各种tracker实现多目标跟踪 |
| 2 | + |
| 3 | +## 亮点 |
| 4 | +1. 统一代码风格, 对多种tracker重新整理, 详细注释, 方便阅读, 适合初学者 |
| 5 | +2. 多类多目标跟踪 |
| 6 | +3. 各种tracker集成在一个文件夹"./tracker/"内, 方便移植到其他detector. |
| 7 | + |
| 8 | +## 集成的tracker: |
| 9 | +SORT, |
| 10 | +DeepSORT, |
| 11 | +ByteTrack([ECCV2022](https://arxiv.org/pdf/2110.06864)), |
| 12 | +DeepMOT([CVPR2020](https://openaccess.thecvf.com/content_CVPR_2020/papers/Xu_How_to_Train_Your_Deep_Multi-Object_Tracker_CVPR_2020_paper.pdf)), |
| 13 | +BoT-SORT([arxiv2206](https://arxiv.org/pdf/2206.14651.pdf)), |
| 14 | + |
| 15 | + |
| 16 | +## TODO |
| 17 | +- [ ] 集成UAVMOT([CVPR2022](https://openaccess.thecvf.com/content/CVPR2022/papers/Liu_Multi-Object_Tracking_Meets_Moving_UAV_CVPR_2022_paper.pdf)) |
| 18 | +- [ ] 达到更好的结果(缓解类别不平衡, 小目标等等)... |
| 19 | +- [ ] MOT challenge数据集 |
| 20 | + |
| 21 | + |
| 22 | +## 效果 |
| 23 | +在VisDrone2019-MOT train训练约10 epochs, 采用YOLO v7 w6结构, COCO预训练模型基础上训练. GPU: single Tesla A100, 每个epoch约40min. |
| 24 | +在VisDrone2019-MOT test dev测试, 跟踪所有的类别. |
| 25 | + |
| 26 | +YOLO v7 VisDrone训练完模型: |
| 27 | +> 链接:https://pan.baidu.com/s/1m13Q8Lx_hrPVFZI6lLDrWQ |
| 28 | +> 提取码:ndkf |
| 29 | +
|
| 30 | +| Tracker | MOTA | IDF1 | IDS | fps | |
| 31 | +|:--------------|:-------:|:------:|:------:|:------:| |
| 32 | +|SORT | **26.4** | 36.4 |3264 |12.2 | |
| 33 | +|DeepSORT | 12.1 | 26.9 | 3860 | 12.4| |
| 34 | +|ByteTrack | 25.1 | 40.8| 1590 | **14.32**| |
| 35 | +|DeepMOT | 15.0 | 24.8|3666 |7.64| |
| 36 | +|BoT-SORT | 23.0 | **41.4**|**1014** |5.41| |
| 37 | + |
| 38 | +> fps具有一定的随机性 |
| 39 | +
|
| 40 | + |
| 41 | + |
| 42 | + |
| 43 | +## 训练 |
| 44 | + |
| 45 | +训练遵循YOLO v7的训练方式, 数据集格式可以参照[YOLO v5 train custom data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) |
| 46 | +即数据集文件遵循 |
| 47 | +```shell |
| 48 | +class x_center y_center width height |
| 49 | +``` |
| 50 | +其中x_center y_center width height必须是**归一化**的. |
| 51 | +如果您训练VisDrone数据集, 可以直接调用: |
| 52 | +```shell |
| 53 | +python tools/convert_VisDrone_to_yolov2.py --split_name VisDrone2019-MOT-train --generate_imgs |
| 54 | +``` |
| 55 | +> 需要您修改一些路径变量. |
| 56 | +
|
| 57 | +准备好数据集后, 假如训练YOLO v7-w6模型(single GPU): |
| 58 | +```shell |
| 59 | +python train_aux.py --dataset visdrone --workers 8 --device <$GPU_id$> --batch-size 16 --data data/visdrone_all.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights <$YOLO v7 pretrained model path$> --name yolov7-w6-custom --hyp data/hyp.scratch.custom.yaml |
| 60 | +``` |
| 61 | +> 更多训练信息参考[YOLO v7](https://github.com/WongKinYiu/yolov7) |
| 62 | +
|
| 63 | +## 跟踪 |
| 64 | + |
| 65 | +> model_path 参数为训练后的detector model, 假设路径为 runs/train/yolov7-w6-custom4/weights/best.pt |
| 66 | +
|
| 67 | +***SORT*** : |
| 68 | +```shell |
| 69 | +python tracker/track.py --dataset visdrone --data_format origin --tracker sort --model_path runs/train/yolov7-w6-custom4/weights/best.pt |
| 70 | +``` |
| 71 | + |
| 72 | +***DeepSORT***: |
| 73 | +```shell |
| 74 | +python tracker/track.py --dataset visdrone --data_format origin --tracker deepsort --model_path runs/train/yolov7-w6-custom4/weights/best.pt |
| 75 | +``` |
| 76 | + |
| 77 | +***ByteTrack***: |
| 78 | +```shell |
| 79 | +python tracker/track.py --dataset visdrone --data_format origin --tracker bytetrack --model_path runs/train/yolov7-w6-custom4/weights/best.pt |
| 80 | +``` |
| 81 | + |
| 82 | +***DeepMOT***: |
| 83 | +```shell |
| 84 | +python tracker/track.py --dataset visdrone --data_format origin --tracker deepmot --model_path runs/train/yolov7-w6-custom4/weights/best.pt |
| 85 | +``` |
| 86 | + |
| 87 | +***BoT-SORT***: |
| 88 | +```shell |
| 89 | +python tracker/track.py --dataset visdrone --data_format origin --tracker botsort --model_path runs/train/yolov7-w6-custom4/weights/best.pt |
| 90 | +``` |
| 91 | + |
| 92 | +> 您也可以通过增加 |
| 93 | +> ```shell |
| 94 | +> --save_images --save_videos |
| 95 | +> ``` |
| 96 | +> 来控制保存跟踪结果的图片与视频. |
| 97 | +
|
| 98 | +## 将./tracker应用于其他detector |
| 99 | +
|
| 100 | +只需保证detector的输出格式为 |
| 101 | +```shell |
| 102 | +(batch_size, num_objects, x_center, y_center, width, height, obj_conf, category) |
| 103 | +``` |
| 104 | +或经典的yolo格式 |
| 105 | +```shell |
| 106 | +(batch_size, num_objects, x_center, y_center, width, height, obj_conf, category_conf0, category_conf1, category_conf2, ...) |
| 107 | +``` |
| 108 | +> 注意: 推理的时候batch_size要求为1. |
0 commit comments