|
| 1 | +""" |
| 2 | +Propagation Histogram |
| 3 | +=================== |
| 4 | +
|
| 5 | +""" |
| 6 | +from matplotlib import pyplot as plt |
| 7 | +from py_eddy_tracker.observations.tracking import TrackEddiesObservations |
| 8 | +from py_eddy_tracker.generic import distance |
| 9 | +import py_eddy_tracker_sample |
| 10 | +from numpy import arange, empty |
| 11 | +from numba import njit |
| 12 | + |
| 13 | + |
| 14 | +@njit(cache=True) |
| 15 | +def cum_distance_by_track(distance, track): |
| 16 | + tr_previous = 0 |
| 17 | + d_cum = 0 |
| 18 | + new_distance = empty(track.shape, dtype=distance.dtype) |
| 19 | + for i in range(distance.shape[0]): |
| 20 | + tr = track[i] |
| 21 | + if i != 0 and tr != tr_previous: |
| 22 | + d_cum = 0 |
| 23 | + new_distance[i] = d_cum |
| 24 | + d_cum += distance[i] |
| 25 | + tr_previous = tr |
| 26 | + new_distance[i + 1] = d_cum |
| 27 | + return new_distance |
| 28 | + |
| 29 | +a = TrackEddiesObservations.load_file( |
| 30 | + py_eddy_tracker_sample.get_path("eddies_med_adt_allsat_dt2018/Anticyclonic.zarr") |
| 31 | +) |
| 32 | +c = TrackEddiesObservations.load_file( |
| 33 | + py_eddy_tracker_sample.get_path("eddies_med_adt_allsat_dt2018/Cyclonic.zarr") |
| 34 | +) |
| 35 | +d_a = distance(a.longitude[:-1], a.latitude[:-1], a.longitude[1:], a.latitude[1:]) |
| 36 | +d_c = distance(c.longitude[:-1], c.latitude[:-1], c.longitude[1:], c.latitude[1:]) |
| 37 | +d_a = cum_distance_by_track(d_a, a["track"]) / 1000. |
| 38 | +d_c = cum_distance_by_track(d_c, c["track"]) / 1000. |
| 39 | + |
| 40 | +# Plot |
| 41 | +fig = plt.figure() |
| 42 | +ax_propagation = fig.add_axes([0.05, 0.55, 0.4, 0.4]) |
| 43 | +ax_cum_propagation = fig.add_axes([0.55, 0.55, 0.4, 0.4]) |
| 44 | +ax_ratio_propagation = fig.add_axes([0.05, 0.05, 0.4, 0.4]) |
| 45 | +ax_ratio_cum_propagation = fig.add_axes([0.55, 0.05, 0.4, 0.4]) |
| 46 | + |
| 47 | + |
| 48 | +bins = arange(0, 1500, 25) |
| 49 | +cum_a, bins, _ = ax_cum_propagation.hist( |
| 50 | + d_a, histtype="step", bins=bins, label="Anticyclonic", color="b" |
| 51 | +) |
| 52 | +cum_c, bins, _ = ax_cum_propagation.hist( |
| 53 | + d_c, histtype="step", bins=bins, label="Cyclonic", color="r" |
| 54 | +) |
| 55 | + |
| 56 | +x = (bins[1:] + bins[:-1]) / 2.0 |
| 57 | +ax_ratio_cum_propagation.plot(x, cum_c / cum_a) |
| 58 | + |
| 59 | +nb_a, nb_c = cum_a[:-1] - cum_a[1:], cum_c[:-1] - cum_c[1:] |
| 60 | +ax_propagation.plot(x[1:], nb_a, label="Anticyclonic", color="b") |
| 61 | +ax_propagation.plot(x[1:], nb_c, label="Cyclonic", color="r") |
| 62 | + |
| 63 | +ax_ratio_propagation.plot(x[1:], nb_c / nb_a) |
| 64 | + |
| 65 | + |
| 66 | +for ax in (ax_propagation, ax_cum_propagation, ax_ratio_cum_propagation, ax_ratio_propagation): |
| 67 | + ax.set_xlim(0, 1000) |
| 68 | + if ax in (ax_propagation, ax_cum_propagation): |
| 69 | + ax.set_ylim(1, None) |
| 70 | + ax.set_yscale("log") |
| 71 | + ax.legend() |
| 72 | + else: |
| 73 | + ax.set_ylim(0, 2) |
| 74 | + ax.set_ylabel("Ratio Cyclonic/Anticyclonic") |
| 75 | + ax.set_xlabel("Propagation (km)") |
| 76 | + ax.grid() |
0 commit comments